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Abstract

In many partially identified econometric models, sharp identified sets can be generi-

cally characterized using specific moment inequalities known as Artstein’s inequalities.

Although such characterization is theoretically appealing, the resulting collection of

inequalities typically includes many redundant elements, which do not carry additional

identifying information but make the analysis computationally intractable. In this pa-

per, we characterize the smallest possible collection of non-redundant inequalities that

suffices for sharpness and provide an efficient algorithm to obtain such inequalities in

practice. As a result, we obtain tractable characterizations of sharp identified sets in

several well-studied settings. In situations when the smallest collection of inequalities

is still infeasible, we discuss additional modeling assumptions that simplify compu-

tation without losing sharpness. We apply the results to the models of static and

dynamic games, potential outcomes, discrete choice, network formation, selectively ob-

served data, and ascending auctions, and demonstrate in simulations that the proposed

method substantially improves upon informal inequality selection.
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1 Introduction

Many econometric models have the following structure: Given covariates X ∈ X , latent

variables U ∈ U , and parameters θ ∈ Θ, the model produces a set G(U,X; θ) ⊆ Y of possi-

ble values for the outcome Y ∈ Y . The researcher does not observe G(U,X; θ) directly, but

postulates that Y ∈ G(U,X; θ0), almost surely, for some θ0 ∈ Θ. The mechanism that selects

a single value Y from the set G(U,X; θ0) may be somehow restricted or left completely un-

specified.1 Examples of such settings include static and dynamic entry games (e.g., Tamer,

2003; Ciliberto and Tamer, 2009; Berry and Compiani, 2020; Gu, Russell, and Stringham,

2022); network formation models (e.g., Miyauchi, 2016; De Paula, Richards-Shubik, and

Tamer, 2018; Sheng, 2020; Gualdani, 2021); English auctions (e.g., Haile and Tamer, 2003;

Aradillas-López, Gandhi, and Quint, 2013); models with missing or interval data (e.g., Man-

ski and Sims, 1994; Manski, 2003; Beresteanu, Molchanov, and Molinari, 2011); potential

outcome models (e.g., Heckman, Smith, and Clements, 1997; Manski and Pepper, 2000, 2009;

Beresteanu, Molchanov, and Molinari, 2012; Russell, 2021); and discrete choice models with

endogeneity (e.g., Chesher, Rosen, and Smolinski, 2013; Chesher and Rosen, 2017; Torgov-

itsky, 2019; Tebaldi, Torgovitsky, and Yang, 2019) or unobserved or counterfactual choice

sets (e.g., Manski, 2007; Barseghyan, Coughlin, Molinari, and Teitelbaum, 2021).

Sharp identified sets in such models can be characterized as follows. Since Y ∈ G(U,X; θ0)

by assumption, for any measurable set A ⊆ Y , the event {G(U,X; θ0) ⊆ A} implies {Y ∈ A}.
Thus, at θ = θ0, the inequalities

P (Y ∈ A |X = x) 󰃍 P (G(U,X; θ) ⊆ A |X = x; θ) (1)

must hold for all A ⊆ Y and x ∈ X . So, a natural identified set for θ is

Θ0 = {θ ∈ Θ : (1) holds for all A ⊆ Y , x ∈ X}. (2)

The results of Artstein (1983) imply that the inequalities in (1) hold if and only if Y ∈
G(U,X; θ), almost surely. Thus, assuming the parameter space Θ captures all other restric-

tions imposed on the model, the identified set Θ0 is sharp.

The above characterization is often impractical since the total number of Artstein’s in-

equalities may be very large. In such settings, it is customary to select a smaller collection

of inequalities based on intuition or experience and proceed with an outer set for Θ0. This

approach has two important drawbacks: First, omitting an important inequality may lead

1In some of the examples cited below, the set-valued predictions naturally arise in the space of latent
variables: given Y,X, and θ, the model produces a set G(Y,X; θ) such that U ∈ G(Y,X; θ0) for some θ0 ∈ Θ0.
The analysis in this paper applies symmetrically in such settings.
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to a substantial loss of identifying information; Second, having outer identified sets that are

very narrow may be a symptom of “identification by misspecification” and potentially lead

to misleading conclusions (see Kédagni, Li, and Mourifié, 2020).

At the same time, examples suggest that many of the inequalities in (2) may be redundant,

in the sense that excluding them from the analysis does not change the resulting identified

set. By finding and removing such inequalities, it is often possible to keep the analysis

tractable while avoiding information loss and mitigating misspecification concerns. This

paper proposes a simple and computationally efficient way to do so.

To address inequality selection, we focus on core-determining classes following Galichon

and Henry (2011); Chesher and Rosen (2017); Luo and Wang (2018); and Molchanov and

Molinari (2018). Consider the Artstein’s inequalities in (1) for a fixed X = x. A class of C
of subsets of Y is called a core-determining class (CDC) if verifying (1) for all A ∈ C suffices

to conclude that it holds for all A ⊆ Y . Evidently, smaller classes C lead to more concise

characterization of the sharp identified set. In this paper, we obtain a simple analytical

characterization of the smallest possible CDC. We show that such CDC depends only on

the structure of the model’s correspondence G(U, x; θ) and the null sets of the underlying

probability distribution and typically needs to be computed only a finite number of times.

We also develop an algorithm for computing the smallest CDC, which avoids the major

computational bottleneck of checking all candidate sets for redundancy. The algorithm

operates by checking the connectivity of suitable subgraphs of a bipartite graph, which

represents the model’s correspondence, and its’ computational complexity is proportional to

the size of the smallest CDC. When the smallest CDC is still infeasible, we discuss imposing

additional assumptions to motivate further inequality selection without losing sharpness. We

apply the proposed methodology to obtain tractable characterizations of sharp identified sets

in several well-studied settings.

This paper contributes to the large and growing literature on econometrics with partial

identification; see, e.g., Pakes, Porter, Ho, and Ishii (2015); Molinari (2020); Chesher and

Rosen (2020); and Kline, Pakes, and Tamer (2021) for detailed reviews. The key object in the

identification analysis is the set P(x; θ) of distributions of the outcome Y , given covariates

X = x and a parameter value θ ∈ Θ. By construction, the sharp identified set for θ0 is given

by Θ0 = {θ ∈ Θ : PY |X=x ∈ P(x; θ), x ∈ X -a.s.}. Existing approaches to identification are

based on obtaining tractable characterizations of the set P(x; θ).

The most closely related papers are Galichon and Henry (2011); Chesher and Rosen

(2017); and Luo and Wang (2018). As in this paper, those authors represent the set P(x; θ)

using the inequalities in (1). Galichon and Henry (2011) discuss several methods for com-

puting sharp identified sets in discrete games. They consider submodular optimization and
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optimal transport approaches, which we discuss in more detail in Section 4.3, and introduce

the notion of core-determining classes. In particular, they show that if the model’s corre-

spondence is suitably monotone, there exists a CDC whose size scales linearly with the size

of the outcome space. In general, however, even the smallest CDC may grow exponentially

with the size of the outcome space, and it is much harder to characterize. This paper extends

the results of Galichon and Henry (2011) by deriving the smallest possible CDC without any

restrictions on the model’s correspondence and developing an efficient algorithm to compute

itin practice. In turn, Chesher and Rosen (2017) derive analytical sufficient conditions for

identifying redundant Artstein’s inequalities. In this paper, we obtain a set of necessary and

sufficient conditions for redundancy and use it to characterize the smallest possible CDC.

Luo and Wang (2018) also provide a characterization of the smallest CDC, which they

call “exact,” in their Theorem 2. We improve on and extend this result in several directions.

First, although Theorem 1 below leads to the same CDC as Theorem 2 in Luo and Wang

(2018), when coupled with Lemmas 1 and 2, it provides a more transparent and complete

characterization. These new results identify the “critical” sets, which must be included

in any CDC, as well as “implicit equality” sets, for which the corresponding Artstein’s

inequalities always bind. Second, Corollary 1.1 establishes that the smallest CDC depends

only on the supports of the random sets G(U, x; θ), conditional on X = x. Since the support

typically has limited dependence on parameter values and covariates, this fact implies that

in discrete-outcome models, the CDC only needs to be computed a finite number of times

and that the conditional Artstein’s inequalities, conditional on an excluded instrumental

variable, can be intersected, which leads to a simpler characterization of sharp identified

sets in many settings. Third, Theorem 1 implies an efficient algorithm for computing the

smallest CDC numerically, which remains feasible far beyond Algorithm 1 of Luo and Wang

(2018). Finally, Section 5 extends the main results to settings in which the outcome variable

has infinite support.

Other closely related papers are Beresteanu, Molchanov, and Molinari (2011) and Mbakop

(2023). Beresteanu, Molchanov, and Molinari (2011) study discrete games under different

solution concepts and characterize the set P(x; θ) as the Aumann expectation of a suitably

defined random set. Convexity of the Aumann expectation allows to express it via the

support function and thus characterize the sharp identified set through a convex optimization

problem. In turn, Mbakop (2023) studies panel discrete choice models and argues that, under

certain restrictions on the distribution of unobservables, the sets P(x; θ) are polytopes and

the inequalities that define their facets can be computed by solving a multiple-objective

linear program (see also Pakes and Porter, 2024). We argue that the CDC approach is

complementary to these methods and enables faster computation of the sharp identified set
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and simpler inference procedures in many settings.

Other related work includes Tebaldi, Torgovitsky, and Yang (2019) and Gu, Russell,

and Stringham (2022). The former paper studies discrete choice models with endogeneity

and the latter covers general discrete-outcome models. Both papers focus on obtaining

sharp bounds directly on the counterfactual of interest, φ(θ0) ∈ R, rather than the full

vector of parameters θ0 ∈ Θ. They consider counterfactuals that can be expressed as linear

functions of the probabilities of cells in a suitable partition of the latent variable space. If

the restrictions on the distribution of latent variables induce only a finite number of linear

constraints on the cell probabilities, the sharp bounds on the counterfactual can be obtained

using linear programming. A similar approach is taken by Russell (2021), who studies a

potential outcomes model with endogenous treatment assignment. The author compares

different approaches to characterizing sharp bounds on functionals of the joint distribution

of potential outcomes in terms of the complexity of the resulting optimization problems. In

the above settings, we show that the CDC approach leads to simpler optimization problems

if the smallest CDC is manageable and the excluded exogenous variables have rich support.

The rest of the paper is organized as follows. Section 2 presents motivating examples

and provides the necessary background. Section 3 presents novel theoretical results. Section

4 provides an algorithm to compute the smallest core-determining class and compares the

proposed approach with other methods. Section 5 provides an extension to models in which

the outcomes have infinite support. Section 6 illustrates the utility of selecting inequalities,

and Section 7 concludes.

2 Models with Set-Valued Predictions

2.1 Motivating Examples

To outline the scope of the paper, we start with three stylized examples featuring discrete-

outcome models. Additional examples are considered in Section 3.3 and Appendix C, and a

discussion of continuous-outcome models is deferred to Section 5.

The first example is a static entry game studied by Bresnahan and Reiss (1991); Berry

(1992); Tamer (2003); Ciliberto and Tamer (2009); Beresteanu, Molchanov, and Molinari

(2011); and Aradillas-López (2020).

Example 1 (Static Entry Game). Each ofN firms, indexed by j = 1, . . . , N , decides whether

to stay out or enter the market, Yj ∈ {0, 1}. The payoff of firm j is

πj(Y, εj) = Yj(αj + δjNj(Y ) + εj),
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where Y = (Y1, . . . , YN) ∈ {0, 1}N is the outcome vector, Nj(Y ) is number of entrants

except j, U = (ε1, . . . , εN) ∈ RN are payoff components unobserved to the researcher, and

(αj, δj)
N
j=1 ∈ R2N are payoff parameters. The joint distribution of latent variables U , denoted

F (·; γ), is assumed to be known up to a finite-dimensional parameter γ ∈ Rdγ . Exogenous

covariates X can be accommodated by letting (αj, δj, γ) = (αj(X), δj(X), γ(X)), but are

omitted here for simplicity. The firms have complete information and play a pure-strategy

Nash Equilibrium. The researcher observes Y ∈ {0, 1}N and wants to learn about features

of θ = ((αj, δj)
N
j=1, γ).

Given U and θ, the model produces a set of predictions for Y corresponding to the set

of pure-strategy Nash Equilibria:

G(U ; θ) = {y ∈ {0, 1}N : yj = 1(αj + δjNj(y) + εj 󰃍 0), for all j = 1, . . . , N}.

Figure 1 illustrates possible realizations of G(U ; θ) when N = 2 and δj < 0 for j = 1, 2.

Dashed lines outline the partition of the latent variable space that corresponds to possible

realizations of G(U ; θ), highlighted in blue. 󰃈

The next example is a simple dynamic model adapted from Berry and Compiani (2020).

Example 2 (Dynamic Monopoly Entry). In time period t = 1, . . . , T , a firm decides to stay

out of or enter the market, At ∈ {0, 1}. The per-period profit is

π(Xt, At, εt) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

π̄ − εt if Xt = 1, At = 1;

π̄ − εt − γ if Xt = 0, At = 1;

0 otherwise,

where Xt ∈ {0, 1} indicates whether the firm was active in period t − 1, εt ∈ R is the

variation in fixed costs, observed by the firm, and (π̄, γ) are the corresponding fixed profit

and sunk costs of entering the market. Suppose that εt = ρεt−1 +
󰁳

1− ρ2vt for some

ρ < 1, and vt are i.i.d. N(0, 1). As in the preceding example, the parameters π̄, γ, and ρ

may depend on exogenous covariates, omitted here for simplicity. The researcher observes

Y = (X1, A1, . . . , AT ) ∈ {0, 1}T+1.

The Bellman equation for the firm’s problem is

V (Xt, εt) = max
At∈{0,1}

󰀓
π(Xt, At, εt) + δ E[V (Xt+1, εt+1) |At, Xt, εt]

󰀔
,

where δ ∈ (0, 1) denotes the discount factor, which is assumed known. Under standard
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(a) Static entry game from Example 1
with N = 2 and δj < 0 for j = 1, 2.

(b) Dynamic model from Example 2 with
T = 2. Outcomes are labeled (X1, A1, A2).

Figure 1: Set-valued predictions in Examples 1 and 2.

conditions, there is a unique stationary solution

At = 1(Ut 󰃑 τθ(Xt)),

where Ut is the quantile transformation of εt, and τ is an increasing function of Xt known

up to the parameters θ = (π̄, γ, ρ).

Note that X1 is endogenous and its data-generating process is left unspecified. One way

to proceed is to treat X1 as part of the outcome vector Y = (X1, A1, . . . , AT ). Then, given

U = (U1, . . . , UT ) and θ, the model produces a set of possible values for Y given by

G(U ; θ) = {(x1, a1, . . . , aT ) : at = 1(Ut 󰃑 τθ(xt)) for t = 1, . . . , T}.

Figure 1 illustrates possible realizations of G(U ; θ) for T = 2. Dashed lines outline the

partition of the latent variable space that corresponds to the possible realizations of G(U ; θ),

highlighted in blue. 󰃈

The final example is a potential outcomes model that has been studied by Balke and Pearl

(1997); Heckman, Smith, and Clements (1997); Heckman and Vytlacil (2007); Beresteanu,

Molchanov, and Molinari (2012); Lee and Salanié (2018); Heckman and Pinto (2018); Mouri-

fie, Henry, and Meango (2020); Russell (2021); and Bai, Huang, Moon, Shaikh, and Vytlacil

(2024), among many others.
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(a) No restrictions on outcome response. (b) Increasing outcome response, Y ∗
1 󰃍 Y ∗

0 .

Figure 2: Set-valued predictions Example 3 with |D| = 2 and |Y| = 4.

Example 3 (Potential Outcomes Models). Let D ∈ D denote the treatment assignment,

Y ∗ = (Y ∗
d )d∈D ∈ Y |D| — potential outcomes, Y =

󰁓
d∈D Y ∗

d 1(D = d) ∈ Y — observed out-

come, and Z ∈ Z — instrumental variables. Suppose Y ∗ and Z are statistically independent

and the outcome response function d 󰀁→ Y ∗
d satisfies additional restrictions summarized by

Y ∗ ∈ SY ∗ for some known set SY ∗ ⊆ Y |D| (e.g., monotonicity, partial monotonicity, concav-

ity, etc.). Suppose the sets D and Y are finite, and Z is arbitrary. The primitive parameter

of interest is the joint distribution of potential outcomes, θ = {P (Y ∗ = y∗)}y∗∈Y|D| .

In this example, it is more straightforward to construct the set-valued prediction for

the latent variables Y ∗ given observables (Y,D, Z). If D = d, then Y ∗
d = Y , but the only

information available about Y ∗
d′ for d

′ ∕= d is that Yd′ ∈ Y and Y ∗ ∈ SY ∗ . Thus, the set-valued

prediction for Y ∗ can be written as:

G(Y,D) =
󰁛

d∈D

1(D = d)Bd(Y ) ∩ SY ∗ ,

where Bd(Y ) = (Y × · · · × {Y } × . . .Y) with {Y } in the d-th component. Notice that Z

does not affect G(Y,D) in any way. Figure 2 illustrates two possible realizations of G(Y,D)

with D ∈ {0, 1} and Y = {y1, y2, y3, y4}. The vertical blue line corresponds to G(y2, 0)

and the horizontal blue line to G(y3, 1). In Panel (a), SY ∗ = Y2 and and in Panel (b),

SY ∗ = {(y, y′) ∈ Y2 : y 󰃑 y′}. 󰃈

2.2 Background: Random Sets and Artstein’s Inequalities

In the above examples, the set-valued prediction of the model depends on a realization of

some random variables, so it is a random set. Identification in such settings can naturally be

studied using tools from the theory of random sets. We briefly introduce the necessary con-

cepts below and refer the reader to Molchanov and Molinari (2018) for a textbook treatment.
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Figure 3: The core of a random set.

Until Section 5, we focus on settings in which the outcome space Y is finite.

Let (U ,F , P ) be a complete probability space and (Y ,B) — a finite measurable space,

with Y = {y1, . . . , yS} ⊆ RdY and B = 2Y . Let M denote the set of all probability measures

on (Y ,B). Let G : U 󰃃 Y be a correspondence. For each A ∈ B, denote the upper and

lower inverse of G by

G−(A) = {u ∈ U : G(u) ⊆ A};

G−1(A) = {u ∈ U : G(u) ∩ A ∕= ∅},
(3)

and note that G−(A) ⊆ G−1(A). If the correspondence G is measurable, in the sense that

G−(A) ∈ F for all A ∈ B, it defines a random (closed) set. Its distribution can be described

by the containment functional, defined for all A ∈ B as

CG(A) = P (G ⊆ A).

The support of a random set G, denoted S ⊆ B, is the collection of sets A ∈ B such that

P (G = A) > 0. Any random variable Y : (U ,F , P ) → (Y ,B) that satisfies P (Y ∈ G) = 1

is called a selection of G. The set of distributions of all selections is called the core, and

will be denoted Core(G). Artstein (1983) showed that the core consists of all probability

distributions that dominate the containment functional:

Core(G) = {µ ∈ M : µ(A) 󰃍 CG(A) for all A ∈ B}. (4)

The inequalities in (4) are known as Artstein’s inequalities. To fully characterize the core,

it usually suffices to consider smaller classes of sets.

9



Definition 2.1 (Core-Determining Class). For any class of sets C ⊆ B, denote

M(C) = {µ ∈ M : µ(A) 󰃍 CG(A) for all A ∈ C}.

A class C ⊆ B is core-determining if M(C) = M(B).

Two types of sets will play an important role in the analysis below.

Definition 2.2 (Critical and Implicit Equality Sets). A set A ∈ B is critical if M(B\{A}) ∕=
M(B). A set A ∈ B is an implicit equality set if µ(A) = CG(A) for all µ ∈ Core(G).

Any core-determining class must contain all critical sets and ensure that all implicit

equality constraints hold. Figure 3 provides a stylized illustration in M. Here, A0 denotes

the class of all implicit equality sets, and the gray shaded region depicts the set {µ ∈ M :

µ(A) = CG(A) for all A ∈ A0}. Each straight line corresponds to an Artstein’s inequality

with an arrow that indicates the direction in which it is satisfied. The core is highlighted

in blue. Any class of sets that includes A0 ∪ {A1, A2, A4, A5} is core-determining. The sets

A1, A2, A4, A5 are critical, while the sets A3, A6 are not.

2.3 Identifying Redundant Inequalities

To construct a core-determining class, it is necessary to understand the implications between

Artstein’s inequalities. Specifically, for what triplets of sets A1, A2, A ∈ B, do the inequalities
µ(A1) 󰃍 CG(A1) and µ(A2) 󰃍 CG(A2) imply µ(A) 󰃍 CG(A), for all µ ∈ Core(G)? In situa-

tions in which the containment functional is additive, the answer is fairly straightforward.

First, suppose that for some A ⊆ Y , there are sets A1, A2 ⊆ Y such that A1 ∩ A2 = ∅,

A1 ∪ A2 = A, and G−(A1 ∪ A2) = G−(A1) ∪ G−(A2). The third condition means that

G ⊆ A1 ∪ A2 if and only if either G ⊆ A1 or G ⊆ A2, so CG(A1) + CG(A2) = CG(A). Then,

given µ(A1) 󰃍 CG(A1) and µ(A2) 󰃍 CG(A2),

µ(A) = µ(A1) + µ(A2) 󰃍 CG(A1) + CG(A2) = CG(A), (5)

so A is redundant given A1 and A2.
2

2As a special case, consider a set A that cannot be expressed as a union of elements of the support of
G, i.e., A ∕= G(G−(A)), where G(G−(A)) =

󰁖
ω∈Ω{G(ω) : G(ω) ⊆ A}. Then, setting A1 = G(G−(A)) and

A2 = A\A1, it follows that G
−(A1) = G−(A) and G−(A2) = ∅. Therefore, given µ(A1) 󰃍 CG(A1), we have

µ(A) 󰃍 µ(A1) 󰃍 CG(A1) = CG(A), so A is redundant given A1. Thus, one may restrict attention to sets A
which can be expressed as unions of elements of the support. See the errata to Beresteanu, Molchanov, and
Molinari (2012), Chesher and Rosen (2017), and Theorems 2.22–2.23 in Molchanov and Molinari (2018) for
related arguments.
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Second, suppose that for some A ⊆ Y there are sets A1, A2 ∕= A such that A1 ∩ A2 = A,

A1 ∪ A2 = Y , and G−(A1) ∪ G−(A2) = U . The third condition means that for all u ∈ U ,
either G(u) ⊆ A1 or G(u) ⊆ A2, which implies CG(A1) +CG(A2) = 1 +CG(A1 ∩A2). Then,

given µ(A1) 󰃍 CG(A1) and µ(A2) 󰃍 CG(A2),

1 + µ(A) = µ(A1) + µ(A2) 󰃍 CG(A1) + CG(A2) = 1 + CG(A), (6)

so A is redundant given A1 and A2. The above conditions can be equivalently stated as

Ac
1∪Ac

2 = Ac, Ac
1∩Ac

2 = ∅, and G−1(Ac
1)∩G−1(Ac

2) = ∅, which will be useful in the sequel.

Below, we show that no other non-trivial implications between Artstein’s inequalities

exist. We use this fact to characterize all critical and implicit equality sets analytically and

provide an efficient algorithm to obtain the smallest possible core-determining class.

3 The Smallest Core-Determining Class

Suppose the model postulates that Y ∈ G(U,X; θ0), almost surely, for some θ0 ∈ Θ. With

the above definitions, the sharp identified set for θ0 can be characterized as3

Θ0 = {θ ∈ Θ : PY |X=x(A) 󰃍 CG(U, x; θ)(A), for all A ∈ C(x, θ), a.s. x ∈ X}, (7)

where C(x, θ) ⊆ B is a core-determining class for the random set G(U, x; θ) conditional on

X = x. In this section, we characterize the smallest possible core-determining class C∗(x; θ),

clarify how it depends on x and θ, and characterize sharp identified sets in a tractable way

in several popular applications.

3.1 Random Sets as Bipartite Graphs

The first step is to represent the random set G(U, x; θ), conditional on X = x, as a bipartite

graph. Let S(x, θ) = {G1, . . . , GK} denote the support of G(U, x; θ) conditional on X = x,

i.e., the set of all values Gk ⊆ Y such that P (G(U, x; θ) = Gk |X = x) > 0. Partition the

latent variable space U as U(x, θ) = {u1, . . . uK}, where uk = {u ∈ U : G(u, x; θ) = Gk}, and
define a probability measure P(x,θ) on U(x, θ) by P(x,θ)(uk) = PU |X=x({u : G(u, x; θ) = Gk}).
Then, the random set G(U, x; θ), conditional on X = x, can be equivalently defined as a cor-

respondence G : (U(x,θ), 2U(x,θ), P(x,θ)) 󰃃 Y between two finite spaces. Such correspondence

can represented by an undirected bipartite graph B with vertices V (B) = (U ,Y) and edges

3The representations via unconditional and conditional Artstein’s inequalities are equivalent; see Theorem
2.33 in Molchanov and Molinari (2018).
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E(B) = {(u, y) ∈ U × Y : y ∈ G(u)}.

Example 1 – 3 (Continued). Figure 4 presents the bipartite graphs for Examples 1 – 3.

Panel (a) depicts the binary entry game with negative spillovers from Example 1. The

upper part represents the outcome space {0, 1}2, and the lower part represents the partition

of latent variable space illustrated in Figure 1. For example, u1 = {(ε1, ε2) ∈ R2 : εj <

−αj, j = 1, 2}, and u3 = {(ε1, ε2) ∈ R2 : −αj 󰃑 εj < −αj − δj}. Also, for example,

G(u3) = {(1, 0), (0, 1)}, G−({(1, 0)}) = u2, and G−1({(1, 0), (0, 1)}) = {u2, u3, u4}.
Panel (b) depicts the dynamic monopoly entry model from Example 2 with T = 2. The

upper part represents the outcome space {0, 1}3 with outcomes labeled as (x1, a1, a2), and

the lower part represents the partition of latent variable space illustrated in Figure 1. For

example, u2 = {(U1, U2) ∈ [0, 1]2 : τθ(0) < U1 󰃑 τθ(1), U2 󰃑 τθ(0)}, and u5 = {(U1, U2) ∈
[0, 1]2 : U1 > τθ(1), U2 > τθ(0)}. Also, for example, G({u1, u3}) = {(0, 1, 1), (1, 1, 1), (0, 0, 0)}
and G−1({(0, 1, 1), (1, 1, 1), (0, 0, 0)}) = {u1, u2, u3, u5, u6}.

Panel (c) depicts the potential outcomes model from Example 3 with D = {0, 1},
Y = {y1, y2, y3, y4}, and SY ∗ = Y2. The upper part is SY ∗ , and the lower part is D ×
Y . For example, G((0, 2)) = {(2, 1), (2, 2), (2, 3), (2, 4)} corresponds to the blue vertical

line and G((1, 3)) = {(1, 3), (2, 3), (3, 3), (4, 3)} corresponds to the blue horizontal line in

Panel (a) of Figure 2. Also, for example, G−({(2, 1), (2, 2), (2, 3), (2, 4)}) = {(0, 2)}, and
G−1({(2, 1), (2, 2), (2, 3), (2, 4)}) = {(1, 1), (0, 2), (1, 2), (1, 3), (1, 4)}. 󰃈

For any given x and θ, the bipartite graph B can easily be constructed either analytically

or numerically, by partitioning the latent variable space as in Figure 1. Note that, although

the thresholds defining the partition depend on x and θ, the graph stays the same until there

is a discrete “regime change.” Sections 3.3 below provides detailed examples.

3.2 The Smallest Core-Determining Class

The implications between Artstein’s inequalities discussed in Section 2.3 can be expressed

in terms of the connectivity of suitable subgraphs of B. A subgraph of B induced by the

vertices (VY , VU) is an undirected bipartite graph with vertices (VY , VU) and edges {(u, y) ∈
E(B) : u ∈ VU , y ∈ VY}. A graph is said to be connected if every vertex can be reached from

any other vertex through a sequence of edges.

For example, Consider the graph in Panel (b) of Figure 4. First, letA1 = {(0, 1, 1), (1, 1, 1)},
A2 = {(1, 1, 0), (0, 1, 0)}, and A = A1 ∪ A2. Then, G−(A1) = {u1}, G−(A2) = {u7},
and G−(A) = {u1, u7}. Thus, A is redundant given A1 and A2, as in Equation (5).

Note that in this case, the subgraph induced by (A,G−(A)) is disconnected. Second, let
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(0, 0) (1, 0) (0, 1) (1, 1)

u1 u2 u3 u4 u5

(a) Entry game from Example 1 with N = 2 and δj < 0 for j = 1, 2.

(0, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 0) (1, 0, 1) (1, 0, 0) (1, 1, 0) (0, 1, 0)

u1 u2 u3 u4 u5 u6 u7

(b) Dynamic binary choice model from Example 2 with T = 2.

(1, 1) (2, 1) (3, 1) (4, 1) (1, 2) (2, 2) (3, 2) (4, 2) (1, 3) (2, 3) (3, 3) (4, 3) (1, 4) (2, 4) (3, 4) (4, 4)

(0, 1) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3) (0, 4) (1, 4)

(c) Potential outcomes model from Example 3 with D = {0, 1}, Y = {1, 2, 3, 4}, SY ∗ = Y2.

Figure 4: Bipartite graphs in Examples 1 – 3.

A = {(0, 0, 1), (0, 0, 0), (1, 0, 1)} and A1 = {(0, 0, 1), (1, 0, 1)} ⊂ A. Such A cannot be ex-

pressed as the union of elements of the support, and G−(A) = G−(A1) = {u4}. Thus, A

is redundant given A1, as in Equation (??). In this case, again, the subgraph induced by

(A,G−(A)) is disconnected. Finally, let A = {(1, 1, 1), (0, 0, 1), (0, 0, 0)}, A1 = A∪{(0, 1, 1)},
A2 = A ∪ {(1, 0, 1), (1, 0, 0), (1, 1, 0), (0, 1, 0)}, so that A1 ∩ A2 = A. Then, G−(A1) =

{u1, u2, u3} and G−(A2) = {u2, u3, u4, u5, u6, u7}, so that G−(A1) ∪G−(A2) = U . Therefore,
A is redundant given A1 and A2, as in Equation (6). In this case, the subgraph induced by

(Ac, G−1(Ac)) is disconnected.

Thus, for any redundant set A ⊆ Y identified by (5)–(6), the subgraph of B induced by

either (A,G−(A)) or by (Ac, G−1(Ac)) is disconnected. Conversely, it turns out that if both
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subgraphs are connected, the set A must be critical.

Lemma 1. Let U = {u1, . . . , uK}, Y = {y1, . . . , yS}, and G : (U , 2U , P ) 󰃃 Y be a non-

empty random set with a bipartite graph B. Suppose that B is connected and P (uk) > 0 for

all k = 1, . . . , K. Then, a set A ⊆ Y is critical if and only if the subgraphs of B induced by

(A,G−(A)) and (Ac, G−1(Ac)) are connected.

The proof of this result is constructive: Given a set A that satisfies the above assumptions,

we construct a distribution µ ∈ Core(G) such that µ(A) = CG(A) and µ(Ã) > CG(Ã) for all

Ã ∕= A. This implies that the set A corresponds to one of the faces of the convex polytope

representing the Core(G), as in Figure 3, which in turn implies that A is critical. The

assumption P (uk) > 0 for all k = 1, . . . , K merely ensures that there are no redundant

elements in U . If P (uk) = 0, then uk can simply be removed from U and B, together with all

its edges. In turn, the assumption that B is connected is substantive and related to implicit

equality sets.

Lemma 2. Let U = {u1, . . . , uK}, Y = {y1, . . . , yS}, and G : (U , 2U , P ) 󰃃 Y be a non-

empty random set with a bipartite graph B. Let Y =
󰁖L

l=1 Yl denote the finest partition of

the outcome space such that Yk ∩ Yl = ∅ and G−1(Yk) ∩ G−1(Yl) = ∅ for all k ∕= l. Then,

A ⊆ Y is an implicit equality set if and only A =
󰁖

l∈LA
Yl for some LA ⊆ {1, . . . , L}.

In particular, Lemma 2 shows that whenever implicit equality sets exist, there are at

least two of them and that none of the implicit equality sets is critical. In the setting of

Lemma 2, the bipartite graph B “breaks” into L connected components Bl with vertices

V (Bl) = (G−1(Yl),Yl) and edges E(Bl) = {(u, y) ∈ G−1(Yl)× Yl : y ∈ G(u)}. For example,

in Panel (a) of Figure 4, the implicit equality sets are {(0, 0)}, {(1, 1)}, and {(1, 0), (0, 1)}. In
panels (b)–(c), the graph B is connected, so there are no implicit equality sets. Combining

the insights of Lemmas 1 and 2 yields a simple characterization of the smallest possible CDC.

Theorem 1. Let U = {u1, . . . , uK}, Y = {y1, . . . , yS}, and G : (U , 2U , P ) 󰃃 Y be a non-

empty random set with a bipartite graph B. Suppose P (uk) > 0 for all k = 1, . . . , K. Then

1. If B is connected, the class of all critical sets characterized in Lemma 1 is the smallest

core-determining class.

2. If B can be decomposed into connected components, as in Lemma 2, there are L core-

determining classes of the same, smallest possible cardinality. Specifically, letting C∗
l

denote the class of all critical sets in Bl, characterized in Lemma 1, the class C∗ =
󰁖L

j=1 C∗
j ∪

󰁖
j ∕=l Yj is core-determining, for each l = 1, . . . , L.
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This result has two key implications. The first one is stated as a corollary.

Corollary 1.1. For any x ∈ X and θ ∈ Θ, let S(x; θ) denote the support of the random set

G(U, x; θ), conditional on X = x, and C∗(x; θ) denote the smallest core-determining class.

If S(x; θ) = S(x′, θ′) for some θ, θ′ ∈ Θ and x, x′ ∈ X , then C∗(x; θ) = C∗(x′; θ′).

As Gu, Russell, and Stringham (2022) point out, in discrete-outcome models, the param-

eter space can typically be partitioned as Θ =
󰁖M

m=1 Θm, with Θm ∩ Θl = ∅ for m ∕= l, so

that S(x; θ) = Sm(x) for all θ ∈ Θm, for each m ∈ {1, . . . ,M}. Then, C∗(x, θ) = C∗
m(x) for

all θ ∈ Θm, so the sharp identified set for θ can be expressed as

Θ0 =
M󰁞

m=1

󰀋
θ ∈ Θm : PY |X=x(A) 󰃍 CG(U,x;θ)(A), for all A ∈ C∗

m(x), x ∈ X
󰀌
.

Additionally, it is often the case that S(x; θ) = S(x′; θ) for all x, x′ ∈ X , for all θ ∈ Θm.

Then, C∗(x, θ) = C∗
m for all θ ∈ Θm and all x ∈ X , so the sharp identified set for θ is

Θ0 =
M󰁞

m=1

󰀝
θ ∈ Θm : essinf

x∈X

󰀃
PY |X=x(A)− CG(U,x;θ)(A)

󰀄
󰃍 0, for all A ∈ C∗

m

󰀞
.

Examples in the following section illustrate.

The second key implication of Theorem 1 is that the smallest CDC can be computed by

checking the connectivity of suitable subgraphs of B. This allows us to devise an algorithm

that avoids checking all 2|Y| − 2 candidate inequalities for redundancy. First, the algorithm

decomposes B into connected components to obtain implicit equality sets. Second, the

algorithm “builds up” all critical sets iteratively within each connected component. The

worst-case complexity of the algorithm is |C∗|(|Y| + |U| + |E|), where |C∗| is the size of the

smallest CDC, |Y| + |U| is the number of vertices, and |E| is the number of edges in B.

Details are provided in Section 4.

3.3 Discussion and Applications

In this section, we apply Theorem 1 to characterize sharp identified sets in Examples 1–3.

We show that the smallest CDC often leads to a much more tractable characterization of

the sharp identified set and only needs to be computed a few times across the values of

θ and X. In some settings even the smallest CDC is too large to be practically useful,

so we consider additional restrictions on the structure of the model’s correspondence or

equilibrium selection to simplify the analysis without losing sharpness. Examples 2 and 3
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consider instrumental variables. The online appendix contains additional applications to

discrete choice with endogeneity and directed network formation.

Example 1 (Continued). First, suppose δj < 0 for all j, so firms compete with each other

upon entering the market.4 For N = 2, the partition of the space of latent variables is

illustrated in Figure 1, and the corresponding bipartite graph is in Panel (a) of Figure 4.

While the regions in the partition and their corresponding probabilities change with the

values of θ = ((αj, δj)
N
j=1, γ), the bipartite graph remains the same as long as all δj < 0.

Therefore, the smallest CDC only needs to be computed once. The same conclusion applies

when αj(X) and δj(X) are functions of exogenous covariates, as long as δj(x) < 0 for all

j = 1, . . . , N , a.s. x ∈ X . Then, assuming also that U = (ε1, . . . , εN) and X are statistically

independent, the sharp identified set for θ can be expressed as

Θ0 = {θ ∈ Θ : essinfx∈X
󰀃
PY |X=x(A)− CG(U,x;θ)(A)

󰀄
󰃍 0, for all A ∈ C∗}.

In this model, the set of Nash Equilibria can only contain equilibria with the same number

of entrants, n ∈ {0, 1, . . . , N}, so the outcome space can be partitioned accordingly, Y =
󰁖N

n=0 Yn, and the bipartite graph B breaks down into N disjoint pieces. This property

dramatically reduces the CDC, because all sets of the form A =
󰁖N

n=0 An, where An ⊆ Yn,

are redundant.5 Table 1a summarizes the results for N ∈ {2, . . . , 6}. Although the CDC is

substantially smaller than the power set of the outcome space, it quickly becomes intractable.

Next, suppose δj > 0, which may be interpreted as that the firms are forming a coalition

or a joint R&D venture. In this case, the set of Nash Equilibria only contains equilibria

with different numbers of entrants. This fact renders the corresponding bipartite graph very

interconnected, which complicates identification. As before, whereas the relevant partition

of the latent variable space and the corresponding probabilities change with θ, the bipartite

graph stays the same as long as all δj > 0 and the CDC only needs to be computed once.

Table 1a summarizes the results for N ∈ {2, . . . , 6}. As before, even the smallest CDC

quickly becomes intractable.

If the sign of δj is ex ante unknown, the parameter space Θ can be partitioned into

M = 3N regions Θ1, . . . ,ΘM according to δj < 0, δj = 0, or δj > 0 for each j, and the

CDC should be computed separately for each m. For typical payoff specifications, δj does

not depend on any exogenous characteristics x, so the support of the random set G(U, x; θ),

conditional on X = x, does not depend on x.

4See Berry (1992) for a detailed discussion and microfoundation.
5This fact follows from Theorem 1 or, alternatively, Theorem 3 from Chesher and Rosen (2017) or Theorem

2.23 from Molchanov and Molinari (2018).
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The analysis can be simplified by restricting firm heterogeneity. For example, suppose

that (i) there are two types of firms such that all firms within each type are identical,

including the unobserved cost shifters; (ii) the profit functions depend only on the numbers

of entrants of each type but not their identities.6 Specifically, suppose the profit of firm

j ∈ {1, . . . , N} of type t ∈ {1, 2} takes the form

πt
j(Y ) =

󰀻
󰁁󰀿

󰁁󰀽

α1 + α2(N
1
j (Y ) +N2

j (Y )) + ε1 t = 1;

β1 + β2N
1
j (Y ) + β3N

2
j (Y ) + ε2 t = 2,

where N t
j (Y ) is the number of entrants of type t other than firm j. Suppose α1, β2, β3 < 0

and β3 󰃍 β2. With β3 = β2, this is a direct simplification of the fully heterogeneous model

discussed above. With β3 > β2, the firms compete in an asymmetric manner (e.g., type-1

firms are large and type-2 firms are small). With this payoff structure, the outcomes can be

grouped together by the number of entrants of each type. Letting N t denote the number

of potential entrants of type t ∈ {1, 2}, the new outcome space is Ỹ = {0, 1, . . . , N1} ×
{0, 1, . . . , N2}, which leads to much simpler CDCs. Table 1a shows that the smallest CDC

remains tractable for different compositions of firm types. Extension to three or more types

is straightforward. 󰃈

Example 2 (Continued). For T = 2, the relevant partition of the latent variable space is

given in Figure 1, and the corresponding bipartite graph in Panel (b) of Figure 4. As long

as x 󰀁→ τθ(x) is strictly increasing, the structure of the bipartite graph does not depend on

θ, so the smallest CDC needs to be computed only once. Let Z ∈ Z denote an excluded

instrumental variable independent of U . Then, the sharp identified set for θ is

Θ0 = {θ ∈ Θ : essinfz∈Z P (Y ∈ A |Z = z)− P (G(U ; θ) ⊆ A) 󰃍 0 for all A ∈ C∗}.

In this example, the bipartite graph B that corresponds to the model’s correspondence has a

simple structure: Each vertex uj has exactly two neighbors, which correspond to x1 ∈ {0, 1}.
As a result, while the power set of the outcome space has cardinality 22

T+1
, the smallest CDC

grows proportionally to 2T . Table 1b summarizes the results for T ∈ {1, . . . , 10}.
In more elaborate dynamic oligopoly models, which are discussed by Berry and Compiani

(2020), one can adopt a type-heterogeneity assumption similar to the one in Example 1 to

keep the analysis tractable. The details are left for future research. 󰃈
6A version of this model with only one type leads back to Bresnahan and Reiss (1991). The model with

two types was proposed by Berry and Tamer (2006) and also studied in detail by Beresteanu, Molchanov,
and Molinari (2008), Galichon and Henry (2011), and Luo and Wang (2018).
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Heterogeneous firms

N 2 3 4 5 6

Total 14 254 65,534 109 1019

Smallest; δj < 0 4 15 94 2,109 106

Smallest; δj > 0 5 14 23,770 − −

Two types of firms

(N1, N2) (1, 1) (2, 2) (2, 4) (2, 7) (6, 6)

Total 14 62 32,766 108 1014

Smallest; β3 = β2 5 11 17 26 35
Smallest; β3 > β2 5 14 31 49 344

(a) Entry games in Example 1.

T 2 3 4 5 6 7 8 9 10

Total 30 65,534 109 1019 1038 1077 10154 10308 10616

Smallest 10 22 46 94 190 382 766 1,534 3,070

(b) Dynamic binary choice model from Example 2.

Table 1: Total number of inequalities and size of the smallest core-determining class.

Note: Symbol “−” indicates that Algorithm 3 implemented in Julia did not finish within 1 minute.

Example 3. (Continued) The parameter of interest is the joint distribution of potential

outcomes, θ = PY ∗ , with a known support SY ∗ . Since the support of the random set G(Y,D)

does not depend on θ or Z, no partitioning of the parameter space is required, and the

smallest CDC needs to be computed only once. Moreover, Z is is independent of Y ∗,

Θ0 = {θ = PY ∗ : PY ∗(A) 󰃍 esssupz∈Z P (G(Y,D) ⊆ A |Z = z), for all A ∈ C},

where C denotes the smallest possible core-determining class.7

Let us now examine the size of C. First, consider the model without any restrictions on the

support of Y ∗. The corresponding bipartite graph (e.g., Panel (c) of Figure 4) is connected, so

there are no implicit equality sets, and all critical sets can be described analytically. Unions

7In this setting, Russell (2021) compared three approaches: (i) all Artstein’s inequalities, (ii) the smallest
available CDC based on Luo and Wang (2018), and (iii) the dual approach of Galichon and Henry (2011).
Since the results of Luo and Wang (2018) did not allow intersecting conditional Artstein’s inequalities over
the values of the instrument, the author concluded that the CDC approach is never preferable. However, as
we argued above, intersecting such inequalities is valid, so (ii) is always simpler than (i). When the smallest
CDC is very large and Z is small, the dual approach of Galichon and Henry (2011) may be preferable. When
Z is rich, the CDC approach is simpler. See Section 4.3 for a related discussion.
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Unrestricted outcome response

|D| = 2 \ |Y| 2 3 4 5 6 7 8

Total 16 512 65,534 107 1011 1014 1019

Smallest 8 42 204 910 3,856 15,890 64,532

Monotone outcome response

|D| \ |Y| 2 3 4 5 6 7 8

2 4 12 36 124 468 1836 7300
3 6 33 220 1,719 14,002 114,349 −
4 8 82 1,126 18,087 297,585 − −

Monotone and concave outcome response

|D| \ |Y| 2 3 4 5 6 7 8

3 4 17 81 504 3,470 25,689 194,074
4 4 17 110 973 10,106 121,755 −

Table 2: Core-determining classes in the potential outcomes model from Example 3.

Note: Symbol “−” indicates that Algorithm 3 implemented in Julia did not finish within 1 minute.

of elements of the support of G(Y,D) are “lattice-shaped” sets A = B1×B2 · · ·×B|D|, where

each Bd ⊆ Y (but not necessarily singleton, as in Figure 2). If at least two of the sets Bd are

strict subsets of Y , any configuration of the remaining |D|− 2 sets Bd′ leads to a critical set

A. If Bd ⊂ Y for some d, and Bd′ = Y for all d′ ∕= d, the corresponding Artstein’s inequalities

restrict only the marginal distribution of the Y ∗
d , so it suffices to consider singleton Bd. Thus,

the total number of critical sets is
󰁓|D|

k=2

󰀃|D|
k

󰀄
(2|Y|−2)k+|Y||D|. Panel (a) of Table 2 provides

some examples with |D| = 2.

Next, consider imposing constraints on the outcome response function d 󰀁→ Y ∗
d . Suppose

D = {d1, . . . , d|D|} is totally ordered. Then, for example, setting SI
Y ∗ = {y∗ ∈ Y |D| : y∗d 󰃑

y∗d+1 for all d = 1, . . . , |D|−1} ensures that d 󰀁→ Y ∗
d is increasing and SIC

Y ∗ = SI
Y ∗∩{y∗ ∈ Y |D| :

y∗d+1 − y∗d 󰃍 y∗d+2 − y∗d+1 for all d = 1, . . . , |D|− 2} further imposes that d 󰀁→ Y ∗
d is concave.

These assumptions substantially restrict the outcome space and the corresponding bipartite

graphs, which results in a much smaller CDC. Panels (b) and (c) of Table 2 illustrate.

Finally, consider imposing more structure on the relationship between D and Z. Suppose

that in addition to the vector of potential outcomes Y ∗, each unit in the population is

characterized by a vector D∗ = (D∗
z)z∈Z of potential treatments, the observed treatment

is D =
󰁓

z∈Z 1(Z = z)D∗
z , and the instrument Z is jointly independent of (Y ∗, D∗). Let

S ⊆ Y |D|×D|Z| summarize the restrictions on the outcome and treatment response functions.
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Given (Y,D, Z), the model produces a set-valued prediction for (Y ∗, D∗)

G(Y,D, Z) =
󰀋󰁓

d∈D 1(D = d)Bd(Y )×
󰁓

z∈Z 1(Z = z)Bz(D)
󰀌
∩ S,

where Bd(Y ) = (Y × · · · × {Y } × . . .Y) with {Y } in the d-th component, and Bz(D) =

(D× · · ·×{D}× . . .D) with {D} in the z-th component. Conditional on Z = z, the random

set G(Y,D, z) takes |Y||D| distinct values and the corresponding realizations do not have

any elements in common. Thus, the corresponding bipartite graph breaks down into |Y||D|
disjoint parts corresponding to implicit equality sets of the form G(y, d, z). The Artstein’s

inequalities reduce to equalities of the form P (Y ∗
d = y,D∗

z = d) = P (Y = y,D = d |Z = z),

for all (y, d) ∈ S, z ∈ Z. These equalities also follow directly from the assumed relationships

between (Y,D, Z) and (Y ∗, D∗), and independence of the instrument, as in Balke and Pearl

(1997) or Bai, Huang, Moon, Shaikh, and Vytlacil (2024). 󰃈

4 Implementation and Relation to Other Methods

4.1 The Master Algorithm

Algorithm 1 below summarizes all the steps necessary to characterize the sharp identified set

Θ0 as in Equation (7). Throughout, we assume that X is discrete or have been discretized

before defining the correspondence G(U,X; θ). We remark on continuous X below.

Algorithm 1 (Sharp Identified Set).

1. Partition the parameter space. Fix x ∈ X . Partition the parameter space, Θ =
󰁖M

m=1 Θm(x), so that the support of G(U, x; θ), conditional on X = x, does not change

with θ within each Θm(x). The partition can typically be constructed analytically; for

linear specifications, the partition can also be obtained numerically using Algorithm

3 in Gu, Russell, and Stringham (2022). (Note: this step is not always required, as

discussed in detail in Section 3.3.)

2. Partition the latent variable space. Fix m ∈ {1, . . . ,M} and any θ ∈ Θm. Let

Y = {y1, . . . , yS} denote the outcome space and S(x; θ) = {G1, . . . , GK} denote the

support of G(U, x; θ), conditional on X = x. Partition the latent variable space as

U(x, θ) = {u1, . . . uK}, where uk = {u ∈ U : G(u, x; θ) = Gk}, and define a measure

P(x,θ) on U(x,θ) by P(x,θ)(uk) = P (U ∈ uk|X = x) for all k = 1, . . . , K. The probabilities

P(x,θ) can be computed by resampling or numerical integration.
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3. Construct the bipartite graph. Define vertices v1, . . . , vS corresponding to Y and

vS+1, . . . , vS+K corresponding to U(x; θ). Define the edges (vS+k, vl) for all vl ∈ Gk, for

all k = 1, . . . , K. Define the graph B.

4. Compute the smallest CDC. Apply Algorithm 3 below to compute the smallest

CDC, denoted Cm(x), for given m and x.

5. Compute the identified set. Repeating Steps 2–4, compute the classes Cm(x) for

all x ∈ X and m = 1, . . . ,M to obtain Θ0. (Note: In view of Corollary 1.1, for all x, θ

such that the support G(U, x; θ), conditional on X = x, stays fixed, the graph B, and

the smallest CDC, Cm(x), only need to be computed once.)

The above algorithm produces a system of conditional moment inequalities of the form

E[1(Y ∈ A) − 1(G(U ;X; θ) ⊆ A) |X = x] 󰃍 0, for all A ∈ Cm(x). If X is discrete or have

been discretized before defining G(U,X; θ), the inequalities can be simply stacked together.

If X is continuous, the smallest CDC approach is only practical if the support of G(U,X; θ),

conditional on X = x, does not depend on x, so partitioning Θ as in Step 1 is not required.

Then, depending on the setting, the above conditional inequalities may either be intersected

overX or turned into unconditional inequalities using some instrument functions h : X → Rd
+

via E[(1(Y ∈ A) − 1(G(U ;X; θ) ⊆ A)h(X)] 󰃍 0. Importantly, such transformation looses

sharpness and may lead to discordant relaxations as discussed in Kédagni, Li, and Mourifié

(2020), unless d → ∞.

4.2 Computing the Smallest Core-Determining Class

Recall from Theorem 1 that the smallest CDC consists of the critical and implicit equality

sets. The latter can easily be found by decomposing the graph B into connected components,

so the main challenge is to locate the critical sets within each connected component. To

simplify notation, suppose that the graph B itself is connected. Say that a set A ⊆ Y is

self-connected if the subgraph of B induced by (A,G−(A)) is connected, and complement-

connected if the subgraph of B induced by (Ac, G−1(Ac)) is connected. Also, say that a set

C is a minimal critical superset of A if there is no critical set C̃ such that A ⊂ C̃ ⊂ C.

The idea is to construct a correspondence F : 2Y 󰃃 2Y that takes a self-connected set

A and returns all of its minimal critical supersets. By definition, such correspondence will

satisfy A ⊆ C for each C ∈ F (A), and F (Y) = ∅. For a collection of sets C, define F (C) =
∪A∈CF (A). Our proposed algorithm iterates on F starting from the class C = {G(u) : u ∈ U}
until there are no more nontrivial critical supersets. Since at each step, the algorithm finds

all minimal critical supersets, it will eventually discover all critical sets.
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The correspondence F is constructed as follows.

Algorithm 2 (Minimal Critical Supersets).

Input: A connected bipartite graph B and a self-connected set A.

Output: The set of all minimal critical supersets of A.

1. Initialize Q = {A ∪G(u) : u ∈ G−1(A)\G−(A)}.

2. For each C ∈ Q:

• Decompose the subgraph of B induced by (Cc, G−1(Cc)) into connected compo-

nents, denoted (Yl,Ul, El), for l = 1, . . . , L.

• Collect all sets of the form C ∪
󰁖

j ∕=l Yj for l = 1, . . . , L into a class P(C).

3. Return
󰁖

C∈Q P(C).

This construction is motivated by two observations. First, since any critical superset

must be self-connected, it suffices to consider the sets in Q. Second, if for some C ∈ Q the

subgraph of B induced by (Cc, G−1(Cc)) breaks down into several disconnected components,

any minimal critical superset must contain all but one of the Yl parts of these components

because all other configurations cannot be complement-connected.

Then, the smallest CDC can be computed as follows.

Algorithm 3 (The Smallest Core-Determining Class).

Input: A bipartite graph B.

Output: The smallest core-determining class.

1. Decompose B into connected components Bk = (Yk,Uk, Ek) for k = 1, . . . , K.

2. For k = 1, . . . , K:

• Initialize Ck = {G(u) : u ∈ Uk} and Rk = ∅.

• For each C ∈ Ck: check whether C is complement-connected. If so, add C to Rk.

• Let F denote the correspondence defined by Algorithm 2. Iterate on F (·) starting
from Ck and collect all sets along the way into Rk.

3. Return
󰁖K

k=1 Rk\Y .

Formal proofs are provided in Appendix A.4. Since at every iteration — except possibly

the first — Algorithm 2 is only applied to critical sets, the worst-case complexity of Algorithm

3 is proportional to the number of critical sets times the cost of decomposing subgraphs of
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B into connected components. The time complexity of decomposing the whole graph B into

connected components using Depth First Search is |Y| + |U| + |E|, where |Y| + |U| and |E|
are the numbers of vertices and edges in B correspondingly.8 Therefore, the worst-case time

complexity of Algorithm 3 is of order max(|CDC|, |U|)× (|Y| + |U| + |E|), where |CDC| is
the size of the smallest CDC.

Algorithm 3 can be efficiently implemented in any programming language that has a

native implementation of sets (e.g., Python or Julia). Since the algorithm essentially only

looks at the critical sets, it is able to compute the smallest CDC quickly whenever it is

tractable. For example, with the Julia implementation, in all examples considered in Section

3.3 in which the CDC has cardinality less than 1,000, computation takes at most several

seconds, even in settings in which the total number of inequalities is prohibitively large

and other algorithms are infeasible. Since the complexity is proportional to the size of the

smallest CDC, further substantial improvements are not possible.

4.3 Comparison with Other Approaches: Additional Restrictions,

Counterfactuals, and Inference

Besides Artstein’s inequalities, several alternative approaches are available for characterizing

sharp identified sets in models with set-valued predictions. This section describes each ap-

proach in more detail and compares it with the CDC approach in terms of (i) computational

tractability; (ii) obtaining sharp bounds counterfactual quantities φ(θ0); and (iii) inference.

Recall that P(x; θ) denotes the set of distributions of the outcome Y , given covariates

X = x and a parameter value θ ∈ Θ, predicted by the model. Let U = U(x; θ) denote

the partition of latent variable space given X = x and θ, defined in Section 3.1. Denote

PY |X=x = (P (Y = y |X = x))y∈Y ∈ [0, 1]|Y| and P(x;θ) = (P (U ∈ u |X = x))u∈U ∈ [0, 1]|U|.

To simplify exposition, we assume that X has finite support.

4.3.1 Artstein’s Inequalities via Core-Determining Classes

With Artstein’s inequalities, the set P(x; θ) is represented as the core of the random set

G(U, x; θ), conditional on X = x. The core is a convex compact polytope, and the smallest

CDC identifies all of its faces. When the smallest CDC is tractable, the Artstein’s inequalities

approach provides a tractable characterization of the sharp identified set Θ0 and has several

attractive features.

First, as illustrated in Section 3.3, additional restrictions on the model — such as instru-

ment exogeneity, support restrictions, and restrictions on the underlying selection mecha-

8See, e.g., Section 3.2 in Kleinberg and Tardos (2006) for the detailed discussion.
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nisms — can easily be accommodated.

Second, it is theoretically straightforward to derive sharp bounds for any feature of θ0

or a counterfactual quantity, expressed as φ(θ0) for some function φ : Θ → R that is known

or point-identified from the data. Assuming that Θ0 is a connected set and θ 󰀁→ φ(θ) is

continuous, the sharp bounds on φ(θ0) are given by [mint∈Θ0 φ(t),maxt∈Θ0 φ(t)], where Θ0 is

described by a collection of moment inequalities. These optimization problems may be hard

to solve in general, but when Θ0 or φ have a special structure, the bounds are often easy to

compute. For instance, in Example 3 above, the parameter θ represents the joint distribution

of potential outcomes, so the Artstein’s inequalities are linear in θ, and Θ0 is a polytope.

Therefore, as discussed by Russell (2021), sharp bounds on many interesting functionals

of θ can be expressed via simple linear or convex optimization problems. Another class

of counterfactuals for which sharp bounds are easy to compute, considered by Torgovitsky

(2019) and Gu, Russell, and Stringham (2022), is discussed in the next section.

Third, given a collection of Arstein’s moment inequalities, inference on θ0 or its subvectors

is a well-studied problem. When the smallest CDC does not change with θ, standard inference

procedures for moment inequalities apply; see Canay and Shaikh (2017) for a review. A minor

complication arises when the CDC changes with θ. In such settings, the parameter space is

partitioned into a finite number of disjoint parts Θ =
󰁖M

m=1 Θm, according to the support of

G, and the identified set takes the form Θ0(P ) =
󰁖M

m=1 Θ0,m(P ). Letting φ̂m,n(θ) denote a

test for H0,m : θ ∈ Θ0,m(P ) that is valid uniformly over a set of distributions Pm, it is easy

to verify that the test φ̂n(θ) =
󰁓M

m=1 φ̂m,n(θ)1(θ ∈ Θm) for H0 : θ ∈ Θ0(P ) is valid uniformly

over ∩M
m=1Pm, and the confidence set may be obtained by test inversion.9 If the implicit

equality sets differ across Θm, the above test will be more powerful than the test using

all of Artstein’s inequalities because it incorporates the information that certain Artstein’s

inequalities are binding. Existing procedures for subvector inference (see, e.g., Romano and

Shaikh, 2008; Bugni, Canay, and Shi, 2017; Kaido, Molinari, and Stoye, 2019) can also be

modified to accommodate situations in which the set of relevant moment inequalities depends

on θ. Pursuing such modifications formally is beyond the scope of this paper.

The CDC approach identifies the inequalities that are redundant for identification. Such

inequalities are also redundant for estimation of the identified set Θ0 or bounds on any func-

tional φ(θ0), provided that the plug-in estimator is appropriate.10 A separate question, which

arises more broadly in moment inequality models, is whether the redundant inequalities can

be used to improve inference procedures in finite samples. Local asymptotic analysis and

9The claim follows immediately from the fact that M is finite, and each of the tests φ̂m,n is uniformly

valid, in the sense that lim supn→∞ supP∈Pm
supθ∈Θ0,m(P ) EP [φ̂n,m(θ)] 󰃑 α.

10That is, Θ̂n = {θ ∈ Θ : P̂n(Y ∈ A |X = x) 󰃍 P (G(U,X; θ) ⊆ A |X = x)∀A ∈ Cθ(x), ∀x ∈ X} without
any slack in the inequalities. See Theorem 5.22 in Molchanov and Molinari (2018) for a related discussion.
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existing results on admissibility of moment inequality tests suggest that the answer depends

on where the researcher wants to direct the power.11 Developing a finite-sample criterion for

whether to use the redundant inequalities for inference is beyond the scope of this paper,

and it is an interesting direction for future research.

4.3.2 Aumann Expectation via Support Function

Beresteanu, Molchanov, and Molinari (2011) represent P(x; θ) as a conditional Aumann

expectation of a suitable random set Q(U, x; θ) ⊆ Y∗, given X = x. Letting Y ∗ denote a

generic integrable selection of Q(U, x; θ), the Aumann expectation E[Q(U, x; θ) |X = x] is

defined as the closure of the set of conditional expectations of all of its integrable selections.

If the underlying probability space is non-atomic, Aumann expectation is a convex set, so it

can be characterized via the support function, hE[Q|X=x](s) = supa∈E[Q|X=x] a
T s, defined on

the unit sphere s ∈ S ⊆ R|Y∗|. The support function satisfies hE[Q|X=x](s) = E[hQ(s)|X = x],

for all s ∈ S.12 If the latter is easy to compute, the sharp identified set can be tractably

characterized by solving, for each θ and x, a concave maximization problem in RdY∗ as

Θ0 = {θ ∈ Θ : sup
t∈B

(tTE[Y ∗ |X = x]− E[hQ(U,x;θ)(t) |X = x]) 󰃑 0, x ∈ X a.s.}. (8)

Beresteanu, Molchanov, and Molinari (2011) apply the above characterization to models with

interval-valued outcomes and covariates and finite games with solution concepts other than

PSNE. In such settings, using Artstein’s inequalities generally does not lead to a tractable

characterization of the sharp identified set.

The Aumann expectation approach can be applied in the models studied above by setting

y∗(Y ) = (1{Y = y})y∈Y and Q(U,X; θ) = {y∗(Y ) : Y ∈ G(U,X; θ)}. For checking whether

a given parameter value θ belongs to the sharp identified set, it often remains computation-

ally tractable even when the smallest CDC is prohibitively large, and thus provides a viable

alternative. However, other aspects of the analysis become less straightforward. First, since

restricting the family of selections of Q(U,X; θ) may break the convexity of the Aumann

expectation, some of the additional restrictions on the model cannot be easily accommo-

dated; see Section 5 in Beresteanu, Molchanov, and Molinari (2012) for a related discussion.

Second, Equation (8) essentially describes the sharp identified set with an infinite number of

conditional moment inequalities for each X = x. This complicates derivations of the sharp

bounds on counterfactual quantities, as well as inference procedures; see, e.g., Andrews and

Shi (2017).

11See, e.g., Example 4.1. in Canay and Shaikh (2017).
12See Theorems 3.4, 3.7, and 3.11 in Molchanov and Molinari (2018).
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4.3.3 Mixed Matching via Linear Programs or Optimal Transport

Galichon and Henry (2011) and Russell (2021) represent P(x; θ) as the set of marginal

distributions PY |X=x on Y of all possible mixed matchings between U and Y . A mixed

matching is a distribution π(u, y, x; θ) supported on Gr(G) = {(u, y) ∈ U × Y : u ∈ G(u)}
that satisfies 󰁓

u∈G−1(y) π(y, u; x, θ) = PY |X=x(y) for all y ∈ Y ,
󰁓

y∈G(u) π(y, u; x, θ) = P(x;θ)(u) for all u ∈ U .
(9)

By Farkas’ Lemma, the existence of such π ∈ R|Y|×|U| is equivalent to

min
η∈R|Y|+|U|

󰀃
b(x; θ)Tη |A(x; θ)Tη 󰃍 0

󰀄
󰃍 0, (10)

where A(x; θ) ∈ {0, 1}|Y|×|U| × {0, 1}|Y |+|U| and b(x; θ) ∈ [0, 1]|Y|+|U| encode the constraints

in (9) and π(u, y, x; θ) 󰃍 0 for all (u, y) ∈ Gr(G) and
󰁓

(u,y)∈Gr(G) π(u, y, x; θ) = 1. So, the

sharp identified set for θ can be characterized as

Θ0 = {θ ∈ Θ : (10) holds x ∈ X -a.s.}. (11)

Galichon and Henry (2011) propose an alternative optimal transport formulation of the

problem: The goal is to transport P(x,y)(u) units of good from sources u ∈ U to PY |X=x(y)

units at terminals y ∈ Y at the minimum cost; the transportation cost is zero if y ∈ G(u)

and one otherwise. The joint distribution π(u, y; x, θ) satisfying (9) exists if and only if

such optimal transport problem has a zero-cost solution. Modern algorithms for solving this

problem have worst-case complexity of order (|Y|+ |U|)× |E|; see, e.g., Orlin (2013).13

The mixed matching approach sometimes remains computationally tractable when the

smallest CDC is not, and thus provides another viable alternative. Additional modeling as-

sumptions can be accommodated, although less conveniently than with the CDC approach.

For example, consider imposing independence of the latent variables U ∈ U and an excluded

instrument Z ∈ Z, as in Example 3 discussed in Section 3.3.14 With the CDC approach, con-

ditional Artstein’s inequalities can simply be intersected over Z. With the mixed matching

approach, to ensure that the U -marginal of π is independent of Z, additional |Z|− 1 match-

13As another alternative, Galichon and Henry (2011) propose using submodular minimization. Using
Artstein’s inequalities, the sharp identified set for θ can be expressed as Θ0 = {θ ∈ Θ : minA⊆Y F(x;θ)(A) 󰃍
0, x ∈ X -a.s.}, where F(x;θ) = P (Y ∈ A |X = x) − CG(U ;x,θ)(A). Since F(x;θ)(·) is submodular, the above
minimization problem is feasible. For each x, ignoring the cost of evaluating CG(U,x;θ)(A), the worst-case
complexity of the above problem is |Y|6; see, e.g., Orlin (2009). This method appears to be generally slower
than the optimal transport approach, unless |U| ≫ |Y|3.

14To match the notation in this section and Example 3, let U = Y ∗, X = ∅, and Y = (Y,D).
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ing constraints are required for each u ∈ U . When |Z| is large or infinite, the task becomes

infeasible. In terms of bounding counterfactual quantities, the mixed matching approach

is applicable if the parameter of interest can be expressed directly in terms of π. In the

context of Example 3, Russell (2021) provides evidence the linear programs describing sharp

bounds on certain functionals of the joint distribution of potential outcomes scale favorably

with |Y| for fixed |D| and |Z|. More generally, similar to the support function approach,

Equations (10)–(11) describe the identified set by an infinite number of conditional moment

inequalities, which complicates derivations of the sharp bounds on counterfactual quantities,

as well as inference procedures.

4.3.4 Minimal Relevant Partition

A closely related approach for characterizing sharp bounds on a class of counterfactuals in

discrete-outcome models using linear programming was proposed by Tebaldi, Torgovitsky,

and Yang (2019) and Gu, Russell, and Stringham (2022). In Gu, Russell, and Stringham

(2022), the model consists of the factual outcome and random set, Y ∈ G(U,X; θ), and

the counterfactual outcome and random set Y ∗ ∈ G∗(U,X; θ). The parameter of interest

is a linear functional of the counterfactual distribution of Y ∗, conditional on X, denoted

φ(PY ∗|X). The counterfactual set of predictions G∗ is assumed to be “coarser” than the

factual set G in the following sense: There must exist a finite partition {u∗
1, . . . , u

∗
L} of the

latent variable space U such that knowing the probabilities of “cells” u∗
l , conditional on

X = x, suffices to bound φ(PY ∗|X). Following Tebaldi, Torgovitsky, and Yang (2019), such

partition is called the Minimal Relevant Partition (MRP). Similarly to the mixed matching

approach, the authors show that Y ∈ G(U,X; θ), a.s., and Y ∗ ∈ G∗(U,X; θ), a.s., hold jointly

(with all random quantities defined on a common probability space) if and only if there exists

a joint mixed matching πx(y, y
∗, u∗

l ) consistent with the model. That is, πx(y, y
∗, u∗

l ) is the

probability that a factual outcome y is chosen from the set G(u∗
l , x; θ), a counterfactual

outcome y∗ is chosen from the set G∗(u∗
l , x; θ), and u ∈ u∗

l , conditional on X = x. Such

a structure enables the authors to express sharp bounds on the counterfactual φ(PY ∗|X∗)

via two linear programs. The choice vector in these programs, (πx(y, y
∗, u∗

l ))y,y∗∈Y,x∈X ,l󰃑L,

is of dimension d = |X ||Y|2L, and there are p = |X |(|Y| + 2) constraints to ensure that

πx(y, y
∗, u∗

l ) is a valid probability distribution and q = X|Y|2L non-negativity constraints.

The CDC approach can also be applied in this framework, and it sometimes leads to

simpler linear programs. The idea is to treat the probabilities of “cells” in the MRP, denoted

µ(u∗
l , x), as unknown parameters. Such “cells” are typically finer than the partition U(x; θ) =

{u1, . . . , uk} described in Section 3.1, so each µ(uk, x) is a sum of several µ(u∗
l , x). Artstein’s

inequalities provide linear inequality constraints on µ(uk, x) of the form P (Y ∈ A |X = x) 󰃍
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󰁓
k∈G−(A) µ(uk, x), for all A ∈ C∗(x). Assuming, for example, that C∗(x) does not change

with x, this approach leads to a linear program with the choice vector (µ(u∗
l , x))x∈X ,l󰃑L of

dimension d = |X |L, p = |X |K equality constraints linking the MRP with U(x; θ), and
q = |X |(|C∗(x)| + L) inequality constraints including the Artstein’s inequalities and non-

negativity constraints. Then, if |C∗(x)| is smaller than |Y|2, the resulting linear program is

easier than the one described in the preceding paragraph. In particular, this is the case in

many entry games in Example 1 and a dynamic entry model in Example 2.

4.3.5 Final Remarks

To summarize the above discussion, when the smallest CDC is manageable, Artstein’s in-

equalities approach provides a simple and universally applicable method for deriving sharp

identified sets for both structural parameters and counterfactuals. It is especially useful in

settings with excluded exogenous covariates that have rich support and are independent of

the unobservables. When the smallest CDC is very large, other methods discussed above

provide viable alternatives.

5 Extension: Outcomes with Infinite Support

This section extends the main theoretical results in Section 3 to models in which the outcome

variable has infinite support. The main distinction here is that we have to carefully treat

measure-zero sets in both latent space and outcome spaces. In view of this, the results below

are somewhat more precise than those in Section 3. We start with a more general setup.

5.1 Setup

Let (U ,F , P ) be a complete probability space and (Y ,B) a measurable space, where Y ⊆ Rd,

and B is the Borel σ-field of subsets of Y . Let M denote the set of all probability measures

on B, and F the class of all closed subsets of Y . A random closed set is a measurable

correspondence G : U 󰃃 Y such that G(u) ∈ F for all u ∈ U . Here, measurability requires

G−(A) ∈ F for every A ∈ F, where G−(A) is defined in (3).

As before, let Core(G) denote the set of distributions of all measurable selections of G.

Given a σ-finite measure Q on B, let MQ = {µ ∈ M : µ ≪ Q} denote the set of probability

measures absolutely continuous with respect to Q. For any two sets A,B ∈ B say that

A = B, Q-a.s., if Q((A ∩ Bc) ∪ (B ∩ Ac)) = 0. For any two sets A,B ∈ F , define “A = B,

P -a.s” similarly. Denote N(A) = G−1(A)\G−(A).

Throughout this section, we impose the following regularity condition.
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Assumption 5.1 (Dominating Measure). Let G : (U ,F , P ) 󰃃 (Y ,B) be a random closed

set. There exists a σ-finite measure Q on B such that

1. Only the distributions µ ∈ Core(G) ∩MQ are of interest.

2. Q(G(u)) > 0 for P -almost all u ∈ U ; for all A ∈ B with Q(A) > 0, Q(A ∩ G(u)) > 0

for P -almost-all u ∈ N(A).

Part 1 of the assumption allows us to control measure-zero sets in the outcome space

Y . In many applications, it is possible to find Q such that Core(G) ⊆ MQ. If the outcome

Y is finite, Q can be taken as a counting measure on Y ; if the sets G(u) have non-empty

interior but can be arbitrarily narrow with positive probability, Q can be taken as a Lebesgue

measure. The researcher can also choose Q to explicitly restrict the set of selections of

interest. Part 2 of the assumption is a mild regularity condition that requires that the

realizations G can be “detected” by the measure Q. It enables us to introduce the notion of

connectivity of the correspondence G similar to that of the bipartite graph in Section 3.1.

Given Q and P , each set A ∈ B can be associated with an equivalence class [A] with

the relation A′ ∼ A if A = A′, Q-a.s., and G−(A) = G−(A′), P -a.s.. For simplicity, in what

follows we write A instead of [A] and speak of sets instead of equivalence classes.

Core-determining classes, critical sets, and implicit-equality sets are defined as follows.

Definition 5.1 (Core-Determining Class). For a class of sets C ⊆ F, denote MQ(C) = {µ ≪
Q : µ(A) 󰃍 CG(A) for all A ∈ C}. A class C ⊆ F is core-determining if MQ(C) = MQ(F).

Definition 5.2 (Critical and Implict-Equality Sets). A set A is critical if MQ(F\{A}) ∕=
MQ(F). A set A is an implicit equality set if µ(A) = CG(A) for any µ ∈ Core(G) ∩MQ.

Any CDC must contain all critical sets and ensure that all implicit equality restrictions

hold. Connected random sets are defined as follows.

Definition 5.3 (Connected Random Sets). The random set G is connected if P (N(A)) > 0

for any A ∈ B with Q(A) > 0.

The idea is that if P (N(A)) = 0, for some A, the outcome space can be partitioned as

Y = Y1 ∪ Y2, with Y1 = A and Y2 = Ac, so that G−1(Y1) ∩ G−1(Y2) = ∅, P -a.s.. That is,

the correspondence G “breaks” into two P -a.s. disjoint components.

The notions of self- and complement-connected sets extend as follows.

Definition 5.4 (Self- and Complement-Connected Sets). Let G : (U ,F , P ) 󰃃 (Y ,B, Q) be

a connected random set in the sense of Definition 5.3. Then
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1. A subset A ⊆ Y is self-connected if there do not exist A1, A2 satisfying A = A1 ∪ A2

and A1 ∩ A2 = ∅, Q-a.s., and G−(A) = G−(A1) ∪G−(A2), P -a.s..

2. A subset A ⊆ Y is complement-connected if there do not exist A1, A2 satisfying Ac =

A∪
1A

c
2 and Ac

1 ∩ Ac
2 = ∅, Q-a.s., and G−1(Ac

1) ∩G−1(Ac
2) = ∅, P -a.s..

5.2 The Smallest Core-Determining Class with Infinite Support

The results below are direct extensions of Lemmas 1 and 2 and Theorem 1.

Lemma 3 (Critical Sets). Let G : (U ,F , P ) 󰃃 (Y ,B, Q) be a connected random set. A

subset A ⊆ Y is critical if and only if it is both self- and complement-connected.

Lemma 4 (Implicit equality Sets). Let Assumption 5.1 hold and G : (U ,F , P ) 󰃃 (Y ,B, Q)

be a random closed set. Let Y =
󰁖

l󰃍1 Yl denote the finest partition of Y such that Yi∩Yj = ∅,

Q-a.s., and G−1(Yi) ∩ G−1(Yj) = ∅, P -a.s., for all i ∕= j. A subset A ⊆ Y is an implicit

equality set if and only if A =
󰁖

l∈LA
Yl for some LA ⊆ N.

Theorem 2 (Smallest CDC). Let Assumption 5.1 hold and G : (U ,F , P ) 󰃃 (Y ,B, Q) be a

random closed set.

1. If G is connected, the class C∗ of all critical sets is the smallest core-determining class.

2. If the outcome space Y can be partitioned as in Lemma 4, there are infinitely many

core-determining classes, each of which is the smallest by inclusion. Specifically, letting

C∗
l denote the class of all critical sets in Yl, characterized in Lemma 3, the class C∗

l =
󰁖

j󰃍1 C∗
j ∪

󰁖
j ∕=l Yj is core-determining, for each l ∈ N.

Corollary 1.1 and the subsequent discussion also apply in continuous-outcome settings.

When the support of G(U, x; θ), conditional on X = x, is infinite, the smallest CDC, C∗(x, θ)

contains an infinite number of sets for each x. This implies that the sharp identified set

for θ0 is generally intractable. However, certain functionals of interest, φ(θ0) ∈ R, may still

admit tractable sharp bounds. In such cases, Theorem 2 can be used to “guess” the sharp

bounds, but to prove sharpness, it is typically easier to explicitly construct a data-generating

distribution that attains the bounds. The following examples illustrate.

5.3 Examples

The first example studies a model with interval-valued data. For related results, see Beresteanu,

Molchanov, and Molinari (2012), Molinari (2020), and references therein.
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Example 4 (Interval Data). Let Y ∗ ∈ Y denote a continuous outcome variable and X ∈
X denote covariates. Suppose the researcher does not observe Y ∗ directly but has access

to continuous random variables YL, YU ∈ Y such that Y ∗ ∈ G(YL, YU) = [YL, YU ]. For

simplicity, suppose X is discrete, and Y = [y, y] for some known y < y. Also, suppose that

P (κ(x) 󰃑 YU − YL 󰃑 κ(x) |X = x) = 1 for some known functions κ(x) and κ(x). The

primitive parameter of interest is the joint distribution θ0 = PY ∗X .

Consider the random set G(YL, YU), conditional on X = x. Since Y ∗ is continuous,

we take Q equal to the Lebesgue measure on Y . Since for any A ⊆ Y with Q(A) > 0,

P (N(A)) > 0, the random set G is connected, and there are no implicit equality sets. In

turn, the critical sets can be determined as follows. The support of G is the set of all closed

intervals in [y, y]. The only sets that satisfy A = G(G−(A)), i.e., can be expressed as unions

of elements of the support of G, are finite or countable unions of disjoint intervals included

in [y, y], where each interval has a length of at least κ(x). Consider a union of the form

A = A1 ∪ A2 = [a1, b1] ∪ [a2, b2] with bj − aj 󰃍 κ(x) and a2 > b1. Then, A1 ∩ A2 = ∅ and

G−(A) = G−(A1)∪G−(A2), P -a.s, meaning that A is not self-connected. A similar argument

applies to any other collection of disjoint intervals, which means that all critical sets must

be contiguous intervals. Next, consider an interval A = [a, b] with y < a < b < y and

b− a > κ(x). Then, the sets A1 = [y, b] and A2 = [a, y] satisfy Ac
1 ∪ Ac

2 = Ac, Ac
1 ∩ Ac

2 = ∅,

andG−1(Ac
1)∩G−1(Ac

2) = ∅, P -a.s., meaning that A is not complement-connected. Note that

intervals of the form [y, b] and [a, y] are complement-connected. Thus, the sharp identified

set for θ0 is completely characterized by inequalities of the form P (Y ∗ ∈ A |X = x) 󰃍
P ([YL, YU ] ⊆ A |X = x) for all sets A in the class

C∗(x) = {[y, a], [a, y] : y + κ(x) 󰃑 a 󰃑 y − κ(x)} ∪ {[a, b] : κ(x) 󰃑 b− a 󰃑 κ(x)},

for all x ∈ X . If κ or κ do not depend on x or its subvevtor, the corresponding inequalities

can be intersected. Importantly, Theorem 2 implies that each of the above inequalities is

also necessary to guarantee sharpness.

Next, suppose the parameter of interest is the conditional CDF φ(θ0) = FY ∗|X=x(·). The
sharp identified set for φ(θ0) is contained in the “tube” of non-decreasing functions satisfying

FY ∗|X=x(y) ∈

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

[0, FYL|X=x(κ(x))] y ∈ [0,κ(x))

[FYU |X=x(y), FYL|X=x(y)] y ∈ [y + κ(x), y − κ(x)]

[FYU |X=x(y − κ(x)), 1] y ∈ (y − κ(x), y].

The upper and lower bounds correspond to valid CDF’s and are sharp. However, not all
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CDFs inside the tube are included in the sharp identified set, because valid candidates must

also satisfy the inequality

FY ∗|X=x(b)− FY ∗|X=x(a) 󰃍 P (YL 󰃍 a, YU 󰃑 b|X = x) (12)

for any a, b such that κ(x) 󰃑 b−a 󰃑 κ(x). This rules out CDFs that increase “too little” over

any such interval. Importantly, Theorem 2 implies that no other restrictions are required.

Finally, suppose the parameter of interest is the difference between conditional quantiles

φ(θ0)= qY ∗|X=x(τ1)− qY ∗|X=x(τ2), for some τ1 > τ2. Each of the quantiles is sharply bounded

by the corresponding quantiles of YL and YU , which may suggest that

φ(θ0) ∈
󰀅
max{0, qYL|X=x(τ1)− qYU |X=x(τ2)}, qYU |X=x(τ1)− qYL|X=x(τ2)

󰀆
.

However, the upper bound may not be sharp due to (12) being violated at a = qY ∗|X=x(τ2),

b = qY ∗|X=x(τ1). Instead, it is easy to verify that the sharp upper bound is

max{b− a |a 󰃍 qYL|X=x(τ2), b 󰃑 qYU |X=x(τ1), τ1 − τ2 󰃍 P (YL 󰃍 a, YU 󰃑 b|X = x)}.

Bounds on other functionals can be obtained similarly. 󰃈

Our final example is a model of ascending auctions studied by Haile and Tamer (2003),

Aradillas-López, Gandhi, and Quint (2013), Chesher and Rosen (2017), and Molinari (2020).

Example 5 (Ascending Auctions). Consider a symmetric ascending auction with N bidders.

Let Vj ∈ [0, v] and Bj ∈ [0, v] denote the valuation and bid of player j, and Vj:N and Bj:N

denote the corresponding j-th smallest valuation and bid. Let F ∈ F denote the joint

distribution of ordered valuations V = (V1:N , . . . , VN :N) supported on S = {v ∈ [0, v]N : v1 󰃑
· · · 󰃑 vN}, where the class F summarizes the assumptions on the information structure. The

distribution F is assumed to be continuous. For simplicity, suppose there is no reserve price

and minimal bid increment. The researcher observes the two largest bids (BN−1:N , BN :N)
15

and wants to learn about features of F .

Following Haile and Tamer (2003), suppose that bidders (i) do not bid above their valu-

ation and (ii) do not let their opponents win at a price they would be willing to pay. Then,

(i) implies Bj:N 󰃑 Vj:N for all j, and (ii) implies VN−1:N 󰃑 BN :N . Thus, the model produces

a set-valued prediction for the bids, given valuations:

G(V ;F ) = [0, VN−1:N ]× [VN−1:N , VN ] ∩ S.

15For example, if it is hard to link the bids to the bidders, one can only reliably use the top two bids.
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As long as F is supported on S, the support of G(V ;F ) does not depend on F . Thus,

the CDC is the same across F , and if the researcher has access to exogenous covariates Z

independent of V , the Artstein’s inequalities can be intersected over the values of Z.

It is easy to verify that the random set G(V ;F ) is connected in the sense of Definition

5.3, so in view of Lemma 4, there are no implicit equality sets. In turn, the class of all critical

sets is vast. In particular, it includes all lower sets A1 = {(v1, v2) ∈ [0, v̄]2 : v1 󰃑 κ(v2)},
for some weakly decreasing function κ : [0, v̄] → [0, v̄]; all sets of the form A2 = {(v1, v2) :
v1 󰃑 a, v2 ∈ [b, c]}, for some a, b, c ∈ [0, v̄] with b 󰃑 c; all sets of the form A1 ∩ A2; and all

countable unions of the resulting family of sets. As a result, the sharp identified set for F is

intractable.

However, the joint distribution F is typically of interest only to the extent that it allows

us to calculate some counterfactual quantities. Aradillas-López, Gandhi, and Quint (2013)

note that in ascending auctions, the expected profit and bidders’ surplus under counterfactual

reserve prices depend only on the marginal distribution of the two largest valuations: φ(F ) =

(FN−1:N , FN :N). The sharp identified set for φ(F ) is given by

Φ0 = {φ(F ) : F ∈ F , P ((BN−1:N , BN :N) ∈ A) 󰃍 PF ([0, VN−1:N ]× [VN−1:N , VN ] ⊆ A) ∀A}.

To make progress, Aradillas-López, Gandhi, and Quint (2013) assume that the valuations

are positively dependent in the sense that the probability P (Vi 󰃑 v |#{j ∕= i : Vj 󰃑 v} = k)

is non-decreasing in k for each i = 1, . . . , N . Under the above assumption, the authors show

that FN :N ∈ [FN−1:N ,φN−1:N(FN−1:N)
N ], where φN−1:N : [0, 1] → [0, 1] is a known strictly

increasing function that maps the distribution of the second-largest order statistic of an i.i.d.

sample of size N to the parent distribution.

The set Φ0 can be characterized more concretely. The Artstein’s inequality corresponding

to the set A = S ∩ [0, v]× [0, v] implies FN−1:N(v) 󰃑 GN−1:N(v); the set A = S ∩ [0, v]× [v, v]

implies FN−1:N(v) 󰃍 GN :N(v); and the set A = S ∩ [0, v]× [0, v] implies FN :N(v) 󰃑 GN :N(v).

Combining these inequalities with the bounds on FN :N yields

GN :N(v) 󰃑 FN−1:N(v) 󰃑 GN−1:N(v);

φN−1:N(GN :N(v))
N 󰃑 FN :N(v) 󰃑 GN :N(v).

By constructing suitable joint distributions F ∈ F , it is possible to show that both upper

bounds and both lower bounds can be attained simultaneously, so the bounds are sharp.

As in the preceding example, although the bounds on FN−1:N are sharp, the corresponding

“tube” of functions includes many CDFs that do not belong to the sharp identified set.

Specifically, the set A = S ∩ [a, v] × [0, b] for b > a corresponds to the Artstein’s inequality
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Figure 5: Projections of identified sets in the dynamic entry model from Example 2.

Note: The figure depicts convex hulls of the projections.

FN−1:N(b) − FN−1:N(a) 󰃍 P (BN−1:N 󰃍 a,BN :N 󰃑 b), which rules out CDFs that do not

increase sufficiently between a and b. This fact has immediate implications for studying,

e.g., optimal reserve prices. The details are left for future research. 󰃈

6 The Importance of Selecting Inequalities

In this section, we provide evidence that selecting Artstein’s inequalities informally may lead

to a substantial loss of identifying information.

6.1 A Dynamic Entry Model

In the first simulation exercise, we revisit the dynamic entry model of Berry and Compiani

(2020) and Example 2. In this setting, even with only a few time periods, the total number

of Artstein’s inequalities is prohibitively large; see Table 1b. To this end, the authors suggest

using inequalities that should intuitively be informative. Specifically, they use the events:

“the firm enters at least once,” “the firm exits at least once,” and “the number of firms in

the market does not change for K consecutive periods.” Below, we compare the resulting

identified sets with the sharp identified set for T = 5 obtained using the smallest CDC.

The true parameter values are set to π̄ = 0.5, γ = 1.5, and ρ = 0.75, and the sample

size is 10,000. Further details of the simulation design are provided in Appendix B. Figure

5 presents the results. The grey shaded regions represent projections of the sharp identified

set in the model with T = 2; the orange regions combine the inequalities for T = 2 with the
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Figure 6: Size of the sharp identified set relative to identified sets constructed with the same
number of inequalities in a market entry model with complementarities in Example 1.

intuitive inequalities of Berry and Compiani (2020); and the light blue regions correspond to

the sharp identified set with T = 5. Evidently, the intuitive inequalities do not come close

to using all of the identifying information in the model with T = 5. In numerical terms,

the orange (“intuitive”) identified set for (π, γ, ρ) is roughly 26% smaller than the grey one,

while the blue (sharp) identified set is 97% smaller.

6.2 A Static Entry Model

In the second simulation exercise, we aim to quantify how much identifying information

would be lost if the researcher used different equally-sized collections of inequalities for the

analysis instead of the smallest CDC.

We revisit the market entry model from Example 1 with N = 3 players and strategic

complementarities, δj > 0 for j ∈ {1, 2, 3}. In this setting, there are 254 nontrivial Artstein’s

inequalities in total, while the smallest CDC contains only 14 inequalities. A comprehensive

experiment would require trying all combinations of 14 inequalities out of 254 (≈ 1022 op-

tions), which is computationally infeasible. To approximate such an experiment, we sample

14 out of 254 inequalities at random 15,000 times and compute the corresponding identified

sets using a fixed grid of parameter values. For each sample, we compute the relative size of

the sharp identified set to the simulated one as the ratio of the numbers of grid points that

satisfy the respective inequalities. The distribution of the relative sizes across simulations

illustrates how alternative collections of inequalities perform relative to the smallest CDC.

We simulate 5,000 observations with parameters αj = −0.4 and δj = 0.4 and unobserv-

ables εj distributed i.i.d. N(0, 1), for j ∈ {1, 2, 3}. Within the regions of multiplicity, we

35



select asymmetric equilibria (e.g., (1, 1, 0) instead of (0, 0, 0)) with probability 0.9 to en-

sure that each outcome is realized with a non-trivial probability. The resulting distribution

over the outcome space {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
is (0.08, 0.08, 0.08, 0.25, 0.25, 0.09, 0.09, 0.08). The grid for (α, δ) is [−0.5,−0.2] × [0.3, 0.5]

with 50 values along each dimension.

Figure 6 presents the results. The left panel depicts the sharp identified set, and the right

panel shows the distribution of the relative size of the sharp identified set across simulations.

The median relative size of the sharp identified set to the simulated ones is 38%, meaning

that in half of the simulations at least 62% of the identifying information is lost. This

result suggests that the smallest CDC is a very specific collection of inequalities and using

alternative sets of inequalities is likely to result in a substantial loss of identifying information.

7 Conclusion

In a large class of partially identified models, the sharp identified sets can be characterized by

the so-called Artstein’s inequalities, many of which may be redundant. To guide inequality

selection, the literature has focused on finding core-determining classes — i.e., subsets of the

inequalities that suffice for extracting all of the identifying information from the data and

maintained assumptions. In this paper, we derived the smallest possible core-determining

class, provided an efficient algorithm to compute it, and used the proposed approach to obtain

tractable characterizations of the sharp identified sets in several well-studied settings. The

results can be applied far beyond the examples considered in the paper. Determining which

moment inequalities are more informative for inference in finite samples is an important open

question and natural direction for future research.
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A Proofs from the Main Text

A.1 Lemma 1

The “only if” direction follows immediately from the arguments in Section 2.3: if a set

A is such that (A,G−(A)) is disconnected, the first argument applies; if (Ac, G−1(Ac)) is

disconnected, the second argument applies. For the “If” direction, we show that for any set A

that is both self- and complement-connected, there exists a probability measure µ ∈ Core(G)

satisfying µ(A) = CG(A) and µ(Ã) > CG(Ã) for all Ã ∕= A. This implies that such A

represents the fact of the convex polytope characterizing the Core(G) and thus it is critical.

Say that a set A is self-connected if the subgraph ofB induced by (A,G−(A)) is connected,

and complement-connected if the subgraph of B induced by (Ac, G−1(Ac)) is connected. Let

ν ∈ M be any probability distribution with ν(y) > 0 for all y ∈ Y . Define a Markov

kernel π0 : U × 2Y → [0, 1] as π0(u,A) = ν(A∩G(u))
ν(G(u))

. Notice that π0(u, ·) is a probability

measure supported on G(u) with π0(u,A) > 0 if and only if u ∈ G−1(A). Such π0 induces a

probability distribution µ0 ∈ M given by

µ0(A) =
󰁓

u∈U π0(u;A)P (u)

=
󰁓

u∈G−(A) π0(u;A)P (u) +
󰁓

u∈N(A) π0(u;A)P (u)

= CG(A) +
󰁓

u∈N(A) π0(u;A)P (u),

whereN(A) = G−1(A)\G−(A). Consider a setA that is both self-and complement-connected.

Define a Markov kernel π as

π(u,B) =

󰀻
󰀿

󰀽

π0(u,B∩Ac)
1−π0(u,A)

u ∈ N(A)

π0(u,B) u /∈ N(A).

Such π moves probability mass away from A so that the induced distribution µ ∈ M satisfies

µ(A) = CG(A) by construction. In turn, for any set Ã ∕= A with CG(Ã) > 0,

µ(Ã) = CG(Ã) +
󰁛

u∈N(Ã)∩N(A)

π0(u, Ã ∩ Ac)

1− π0(u,A)
P (u) +

󰁛

u∈N(Ã)∩N(A)c

π0(u, Ã)P (u). (A.1)

If N(Ã) ∩ N(A)c ∕= ∅, the second sum in (A.1) is strictly positive and the desired result

follows. It remains to consider the case N(Ã) ⊆ N(A). There are three possibilities:

1. A∩Ã ∕= ∅ and A∩Ãc ∕= ∅. Since N(Ã) ⊆ N(A), in particular, N(Ã)∩G−(A) = ∅. In

this case, the sets A1 = A∩ Ã and A2 = A∩ Ãc satisfy A1 ∪A2 = A, A1 ∩A2 = ∅ and
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G−(A) = G−(A1)∪G−(A2), which contradicts the assumption that A is self-connected.

2. A ∩ Ã = ∅. In this case, the first sum in (A.1) is strictly positive.

3. A ∩ Ãc = ∅. Then, there cannot exist u ∈ U such that G(u) ∩ (Ã ∩ Ac) ∕= ∅ and

G(u) ∩ Ãc ∕= ∅. In this case, the sets Ac
1 = Ã ∩ Ac and Ac

2 = Ãc satisfy Ac
1 ∪ Ac

2 = Ac,

Ac
1 ∩ Ac

2 = ∅ and G−1(Ac) = G−1(Ac
1) ∪ G−1(Ac

2), which contradicts the assumption

that A is complement-connected.

Therefore, there exists a distribution µ ∈ M such that µ(A) = CG(A) and µ(Ã) > CG(Ã)

for all Ã ∕= A, which means that A is critical.

A.2 Lemma 2

Let Y be an arbitrary selection of G with a distribution µ. Since for each l ∈ {1, . . . , L},
Y ∈ Yl holds if and only if U ∈ G−(Yl), it must be that µ(Yl) = P (U ∈ G−(Yl)) = CG(Yl).

To see that no other subset A ⊆ Y satisfies this property, consider the Markov kernel π0 and

the induced distribution µ0 from the proof of Lemma 1. Since N(A) ∕= ∅, it follows that

µ0(A) > CG(A), so such A cannot be an implicit equality set.

A.3 Theorem 1

First, suppose B is connected, so there are no implicit-equality sets. To prove that the class

C∗ of all critical sets is core-determining, we show that all non-critical sets can be removed

simultaneously without changing the core. Doing so would only be problematic if there

existed distinct non-critical sets A and B such that A must be present to claim that B is

redundant and vice versa (i.e., no collection of sets excluding A can suffice to claim B is

redundant, and vice versa). By Lemma 1, every non-critical set must be not self-connected

or not complement-connected. Consider three possible cases.

1. Both A and B are not self-connected. Then, A = Ã ∪ B for some Ã with Ã ∩ B = ∅
and G−(A) = G−(Ã) ∪G−(B), and also B = B̃ ∪ A for some B̃ with B̃ ∩ A = ∅ and

G−(B) = G−(B̃) ∪G−(A). This implies A = B.

2. Both A and B are not complement-connected. Then, Ac = Ãc ∪ Bc for some Ã with

Ãc ∩ Bc = ∅ and G−1(Ãc) ∪ G−1(B) = ∅, and also Bc = B̃c ∪ Ac for some B̃ with

B̃c ∩ Ac = ∅ and G−1(B̃c) ∩G−1(Ac) = ∅. This implies A = B.

3. A is not self-connected and B is not complement-connected. Then, (i) A = Ã ∪ B for

some Ã with Ã ∩ B = ∅, and G−(A) = G−(Ã) ∪ G−(B), and also (ii) Bc = B̃c ∪ Ac
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for some B̃ with B̃c ∩ Ac = ∅ and G−1(B̃c) ∩ G−1(Ac) = ∅. Then, by construction

B̃c = Ã, which implies that the random set G cannot be connected. Indeed, for any

u ∈ U such that G(u)∩ Ã ∕= ∅ and G(u)∩B ∕= ∅, it must also be that G(u)∩Ac ∕= ∅,

because otherwise (i) is violated—but the existence of such u would contradict (ii).

Next, let Y =
󰁖L

l=1 Yl with Yi ∩ Yj = ∅ for i ∕= j, denote the finest partition of the

outcome space with the property G−1(Yi) ∩ G−1(Yj) = 0. Then, any set of the form A =

∪L
l=1Al with Al ⊆ Yl satisfies G

−(A) =
󰁖L

l=1 G
−(Al), so it is redundant given (Al)

L
l=1. Also,

since
󰁓L

l=1 µ(YL) = 1 for any µ ∈ Core(G), any one (and only one) of the sets Yl can be

omitted from the CDC. Combined with the preceding argument, these facts imply that a

class containing all critical subsets of all Yl and all but one implicit equality sets is one of

the smallest CDCs.

A.4 Algorithms 2 and 3

It suffices to show that Algorithm 2 identifies all minimal critical supersets of a given self-

connected set. By Lemma 1, critical sets must be self-and complement-connected. Given a

self-connected set A, the idea is to list all possible expansions of A, denoted C = A ∪ B,

that satisfy two properties: (i) C is self- and complement-connected and (ii) there is no

self- and complement-connected C̃ such that A ⊂ C̃ ⊂ C with strict inclusions. To be self-

connected, the set C must contain G(u) for some u ∈ G−1(A)\G−(A). To find a minimal

such C, it suffices to look for C = A ∪ G(u) for u ∈ G−1(A)\G−(A). If the subgraph of B

induced by (Cc, G−1(Cc)) is connected, such C is one of the minimal critical supersets of

A. If this subgraph “breaks” into disconnected components, denoted here by (Yl,Ul, El), for
l = 1, . . . , L, then only sets of the form Pl = C ∪

󰁖
j ∕=l Yj, for some l, can be minimal critical

sets. Indeed, such Pl is self-connected because each of Yj must be linked with C (otherwise,

the graph B would be disconnected), and complement-connected since the subgraph induced

by (Pl, G
−1(Pl)) is precisely the remaining connected component (Yl,Ul, El). Also, any proper

subset of Pl cannot be complement-connected by construction. Therefore, Algorithm 2 finds

all minimal critical supersets. That Algorithm 3 finds all critical sets follows from the

discussion in the main text.

A.5 Lemma 3

Under the stated assumptions, the proof is nearly identical to that of Lemma 1 with the

following modifications. Let ν ≪ Q be a probability measure that satisfies dν/dQ > 0, so

that ν(G(u)) > 0, P -a.s.. Define a map π0 : U × B → [0, 1] as π0(u,A) = ν(A∩G(u))
ν(G(u))

. By
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Robbins’ Theorem (see Theorem 1.5.16 in Molchanov, 2005) and standard properties of

measurable functions, the map u 󰀁→ π0(u,A) is measurable for each A ∈ B. By construction,

the set-function A 󰀁→ π0(u,A) defines a probability measure on B, for P -almost all u ∈ U .
Thus, π0 is a Markov kernel. Notice that π0(u, ·) is supported on G(u), and Definition

5.3 guarantees π0(u,A) > 0 for P -almost all u ∈ N(A). Such π0 induces a probability

distribution µ0 ≪ ν given by

µ0(A) =

󰁝

G−1(A)

π0(u;A)dP

=

󰁝

G−(A)

π0(u;A)dP (u) +

󰁝

N(A)

π0(u;A)P

= CG(A) +

󰁝

N(A)

π0(u;A)dP.

The rest of the argument proceeds exactly as in the proof of Lemma 1, with all summations

replaced by integrals and qualifiers P -a.s. and Q-a.s. added when referring to set operations

in U and Y .

A.6 Lemma 4 and Theorem 2

The proofs are nearly identical to the corresponding proofs of Lemma 2 and Theorem 1, with

the qualifiers P -a.s. and Q-a.s. added when referring to set operations in U and Y .

B Simulation Design in Section 6

B.1 Dynamic Entry Game

Our simulation design follows that of Berry and Compiani (2020). Let T be the number of

observed periods and T̄ = 50 + T the total number of periods used in the simulation. Let

N = 10,000 be the sample size. The data are generated as follows: (i) Draw N vectors of

latent variables ε of size T̄ according to the AR(1) process specified in Example 2; (ii) For

each sample, draw X1 ∼ Bernoulli(p = 0.5) and solve for the optimal policy for T̄ periods.

(iii) Keep the last T periods as the observed data. There are three main parameters (π̄, γ, ρ)

set to (0.5, 1.5, 0.75), and an auxiliary parameter π′ = π − γ = −1. The grid has step size

0.025 and boundaries π ∈ [−1.5, 1.5], π′ ∈ [−3, 0], and ρ ∈ [0, 1].
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C Additional Examples

We have reserved two more examples for the appendix. The first example is a discrete choice

model with endogenous covariates, studied by Chesher, Rosen, and Smolinski (2013) and

Tebaldi, Torgovitsky, and Yang (2019).

Example 6 (Discrete Choice with Endogeneity). Individuals choose one of J+1 alternatives,

Y ∈ {y0, y1, . . . , yJ} ≡ Y , where y0 represents the outside option. Choosing yj yields utility

vj(X) + εj , where X ∈ {x1, . . . , xK} ≡ X may include prices and individual- and market-

level covariates, and εj ∈ R are latent utility shifters. Individuals maximize their utility, so

Y = yj∗ for j∗ = argmaxj{vj(X) + εj}. Normalize v0 = 0 and ε0 = 0. Some components

of X may be correlated with the latent payoff shifters ε = (ε0, ε1, . . . , εJ), but the nature of

this dependence is left unspecified. The econometrician observes Y ∈ Y and X ∈ X , and

has access to instrumental variables Z ∈ Z, which are statistically independent of ε.

Note that X is endogenous and its data-generating process is left unspecified. Such X

can be viewed as part of the outcome vector (Y,X). Denote vjk = vj(xk), for all (j, k), and

let θ = ((vjk)
J
j=1)

K
k=1; denote Uj ≡ εj − ε0, for all j, and let U = (U1, . . . , UJ) ∈ RJ . Then,

given U and θ, the model produces a set of possible values for (Y,X) given by

G(U ; θ) = {(yj, xk) : vjk − vlk 󰃍 Ul − Uj for all l ∕= j}.

Figure 7 illustrates possible realizations of G(U ; θ) for some fixed θ in a model with Y =

{y0, y1, y2} and X ∈ {x1, x2}. Dashed lines outline the partition of the latent variable space

that corresponds to possible realizations of G(U ; θ), highlighted in blue.

Figure 8 depicts the corresponding bipartite graph. The upper part represents the out-

come space, Y ×X , and the lower part corresponds to the partition of latent variable space

in Figure 7. For example, u4 = {(U1, U2) : U1 󰃑 −v11, U2 󰃑 −v22}. Depending on the values

of θ = ({vjk}j,k, γ), the partition and the probabilities of the corresponding regions differ,

but as long as v11 > v12 and v21 > v22, the corresponding bipartite graph remains the same.

Suppose that all θ ∈ Θ satisfy this restriction.16 Then, the smallest CDC does not change

with θ or Z, so it only needs to be computed once. Since P (G(U ; θ) ⊆ A) does not depend

on z, the sharp identified set is given by

Θ0 = {θ ∈ Θ : essinf
z∈Z

P ((Y,X) ∈ A |Z = z) 󰃍 P (G(U ; θ) ⊆ A) for all A ∈ C∗}.

If X ∈ {x1, . . . , xK}, the power set of the outcome space grows proportionally to 2(J+1)K .

16Otherwise, partition the parameter space as in Example 1 in the main text.
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with J = K = 2.

Figure 7: Set-valued predictions in a discrete choice model from Example 6

(y2, x2) (y2, x1) (y0, x2) (y0, x1) (y1, x2) (y1, x1)

u1 u2 u3 u4 u5 u6

Figure 8: Discrete choice model from Example 6 with J = 2 and X ∈ {x1, x2}.
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K 2 3 4 5 6 7 8

Total 62 510 4,094 32,766 0.2 · 106 2 · 106 107

Smallest 12 33 82 188 406 842 1,703

K 9 10 11 12 13 14 15

Total 108 109 1010 1011 1011 1012 1013

Smallest 3,397 6,733 13,321 26,372 52,298 103,912 206,828

Table 3: Core-determining classes in the discrete choice model from Example 6.

Yet, due to the simple structure of the underlying bipartite graph, the smallest CDC appears

to grow proportionally to 2K . Table 3 summarizes the results for K ∈ {2, . . . , 15}.
The analysis above is similar to Chesher, Rosen, and Smolinski (2013): They also treat

X as part of the outcome vector and condition only on Z, which leaves FU |X=x completely

unspecified. The inequalities in C∗ coincide with those obtained by Chesher, Rosen, and

Smolinski (2013), yet we also show that the resulting characterization cannot be further

simplified, providing a somewhat negative result. Tebaldi, Torgovitsky, and Yang (2019)

take a different approach. They introduce the Minimal Relevant Partition (MRP), which is

conceptually similar to the partition in Figure 7, and condition on both X and Z, treating

the probabilities that the conditional distribution FU |X=x assigns to each of the regions

in MRP, η = (η1, . . . , η|MRP |), as unknown parameters. Theorem 2.33 in Molchanov and

Molinari (2018) implies that the two approaches are equivalent and deliver the same sharp

identified sets. If the functional of interest depends only on η and Z is discrete, the MRP

offers substantial computational advantages. If the support of X is relatively small, but the

support of Z is very rich, the CDC approach may be computationally simpler. 󰃈

The final example revisits the network formation model of Gualdani (2021).

Example 7 (Directed Network Formation). N firms form directed links with each other.

The strategy of each firm is a binary vector Yj = (Yjk)k ∕=j ∈ {0, 1}N−1, where Yjk indicates

the presence of a directed link from j to k, and the outcome of the game is Y ∈ {0, 1}N(N−1).

The solution concept is Pure Strategy Nash Equilibrium (PSNE). Since the total number

of directed networks with N players is 2N(N−1), the size of the outcome space Y of this

game is 22
N(N−1)

. This renders sharp identification practically infeasible, even for small N .

To simplify the analysis and motivate inequality selection, Gualdani (2021) imposes further

restrictions on the model. The discussion below is conditional on covariates X = x.

First, for each firm k, define a local game Γk in which the remaining N − 1 firms decide

whether to form a directed link to firm k. Let Y k = (Y k
1 , . . . , Y

k
N) ∈ Yk denote the outcome
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of Γk. Suppose the payoff of firm j is additively separable, πj(Y, ε; θ) =
󰁓

k ∕=j π
k
j (Y

k, εk; θ),

where each πk
j (Y

k, εk; θ) is the same as in the entry game in Example 1 with δj > 0. Then,

the payoff from each local game depends only on the outcome of that local game, and Y is

a PSNE if and only if Y k is a PSNE of Γk, for all k. Second, suppose that the local games

are statistically independent — that is, both ε1, . . . , εN and the corresponding selection

mechanisms are mutually independent.

Under the above assumptions, the random set of equilibria of the game G(ε) is a Cartesian

product of N independent random sets Gk(εk) of equilibria in the local games. It follows

that Core(G1) × · · · × Core(GN) = Core(G) ∩ S, where S is the set of distributions on Y
with independent marginals over Yk. If the distribution of the data lies in S, the identified

sets

Θ0 = {θ ∈ Θ : P (Y ∈ A) 󰃍 P (G ⊆ A) ∀A ⊆ Y};

Θ′
0 = {θ ∈ Θ : P (Y k ∈ Ak) 󰃍 P (Gk ⊆ Ak) ∀Ak ⊆ Yk, ∀k}

are equal. If the distribution of the data does not lie in S, then Θ0 ⊆ Θ′
0, because the latter

checks a subset of inequalities from the former. To characterize Θ′
0, Theorem 1 can be applied

to each Γk separately. For N = 3, there are 254 inequalities in total and 15 in the smallest

class. For N = 4, there are 1019 inequalities in total and only 144 in the smallest class. For

N = 5, there are 10307 inequalities in total and 95,080 in the smallest class. Although the

computational burden is lifted substantially, the resulting set of inequalities is still too large.

To this end, one can adopt a type-heterogeneity assumption as in Example 1 in the main

text to keep the analysis tractable. The details are left for future research. 󰃈
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