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Abstract

This paper proposes a novel non-parametric approach to partial identification of the

distribution of the highest valuation, seller’s expected profit, and optimal reserve price

in symmetric ascending auctions. Our approach restricts the distribution of valua-

tions away from the pure common- and independent private values settings, leading

to substantially tighter bounds. It also accommodates an unknown number of bid-

ders, as long as bounds on it are available. Additionally, we formulate and solve the

Min-Max-Regret problem of the seller choosing a reserve price while facing ambigu-

ity about the distribution of valuations. We apply the proposed methodology to a

new dataset consisting of more than 3500 art auctions held by the two largest auction

houses, Christie’s and Sotheby’s. For Modern Art sold in New York City priced be-

tween $1.0M and $10.0M, we find that setting reserve prices 26% higher would increase

the seller’s expected profit by at least $126K per lot, or $3.8M per auction.
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1 Introduction

Open ascending auctions are widely used for selling a variety of goods ranging from used

cars and timber to rare wine and art. The two major challenges in the empirical analysis

of ascending auctions are unobserved heterogeneity at the auction level, which makes the

valuations interdependent, and an unknown number of bidders. In this paper, we propose

a new non-parametric partial identification approach, which addresses these challenges in a

computationally simple manner, and apply it to art auctions.

We consider the problem of a seller choosing a reserve price to maximize expected profit

under two main assumptions: (i) The bidders are symmetric, and their valuations depend

on a common component and independent private components (e.g., projected future resale

price of an artwork and consumption value respectively); and (ii) The transaction price in an

auction is the greater of the reserve price and second-highest valuation. Under Assumption

(ii), the only unknown component in the seller’s expected profit is the marginal distribution

of the highest valuation. Under Assumption (i), this distribution can be expressed as an ex-

pectation of a convex function of the conditional distribution of the second-highest valuation,

conditional on the common component. By bounding the distance between such conditional

distribution and its’ marginal counterpart, we restrict the dependence between valuations

away from the pure common and independent private value settings. This further allows us

to obtain point-wise sharp bounds on the distribution of the highest valuation by solving

two generalized moment problems that minimize or minimize the expected value of a convex

function subject to constraints on the mean and variance of the underlying distribution. We

show that the bounds can be easily computed through univariate convex optimization. Since

the distribution of the highest valuation is not point-identified, the expected profit function

is ambiguous to the seller. To resolve the ambiguity, we propose using the Min-Max-Regret

criterion, arguing that it is in line with the goal of profit maximization. Since the sharp

identified set for the expected profit is intractable, we formulate and analytically solve two

relaxations of the Min-Max-Regret problem. Using empirically-calibrated simulations, we

compare the proposed reserves with the “pessimistic” max-min reserve and the status quo

of zero reserve and find that the proposed reserves may lead to a sizable increase in profit.

We apply the proposed methodology to study art auctions held by the two major auction

houses, Christie’s and Sotheby’s. The auction houses serve a large market: In 2023, they

reported revenues of $7.9B and $6.2B respectively. On November 9–10, 2022 alone, the

155-work collection of a deceased technology billionaire Paul Allen sold for $1.65B towards

philanthropy, with the most expensive piece, Les Poseuses, Ensemble (Petite version), 1888-

1890 by Georges Seurat, selling for $149.24M.
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Besides the challenges described above, empirical studies of art auctions are limited by

data availability. The auction houses are notoriously secretive — the websites only provide

basic information about the lot and the final transaction price, while the data on bids, the

number of bidders, and bidders’ identities in past auctions are kept private. To this end,

we assemble a large new dataset comprising more than 3500 auction lots using live-stream

YouTube videos of the auctions held by Sotheby’s and Christie’s between 2020 and 2024. For

each lot, we obtain a complete bidding sequence, lower and upper bounds on the number of

bidders, and detailed information about the lot, including the low and high estimates of the

lot’s value, location of the auction and category of art, artists name, period, provenance, and

condition report. For auctions for modern art in New York City with price range between

$1.0M and $10.0M, we find that setting reserve prices 26% higher would increase the expected

seller’s profit by at least $126K per lot, or $3.8M per auction.

Related Literature. We focus on ascending auctions and refer the reader to Athey

and Haile (2007) and Hortaçsu and Perrigne (2021) for detailed discussions of the broader

auction literature. Early work on non-parametric identification in ascending auctions fo-

cused primarily on the independent private values (IPV) settings with a known number

of bidders. In this setting, assuming equilibrium play, Athey and Haile (2002) established

point identification of the marginal distribution of bidders’ valuations. Indeed, observing

any order statistic of the i.i.d. sample of valuations suffices to recover the parent marginal

distribution. Haile and Tamer (2003) relaxed the equilibrium play assumption, allowing for

minimal bid increments and jump bidding, and provided partial identification results for the

marginal distribution of valuations and expected profit. Recently, Chesher and Rosen (2017)

and Molinari (2020) studied sharp identification without equilibrium play, showing that even

point-wise sharp bounds on the marginal distribution of valuations are hard to characterize.

In settings with unobserved heterogeneity and interdependent valuations, the analysis is

more complicated. The main challenge comes from the fact that the highest valuation is

never observed, by design of the auction. Athey and Haile (2002) formally showed that in

the affiliated private values model with equilibrium play, the joint distribution of bidders’

valuations is not identified. Aradillas-López, Gandhi, and Quint (2013) pointed out that if

the transaction price in an auction is the larger of the reserve price and the second-highest

valuation, then certain functionals of interest, such as the seller’s expected profit or bidder’s

expected surplus, depend only on the marginal distributions of the two highest valuations.

Under the stated assumption, the distribution of the second-highest valuation is observed, so

the identification problem is to obtain bounds on the distribution of the highest valuation.

Assuming that the valuations are symmetric and positively dependent, the authors derived

simple bounds corresponding to the extreme cases of independent private and pure common
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values. Observing that the bounds may be very wide, the authors proposed to leverage vari-

ation in the number of bidders to tighten the bounds, under additional restrictions. In this

paper, we do not rely on the variation in the number of bidders and, instead, propose to rule

out the extreme cases of independent private and pure common values, which are arguably

often implausible. Our bounds are point-wise sharp and straightforward to compute.

Several approaches have been proposed to deal with unknown number of bidders. In

IPV settings, a popular approach is due to Song (2004). The author noted that the dis-

tribution of an order statistic from an i.i.d. sample, conditional on a lower order statistic,

does not depend on the sample size, and used this fact to non-parametrically identify the

marginal distribution of the valuationss. In turn, Marra (2020) used results on stochastic

ordering of the differences between adjacent order statistics, known as sample spacings, to

partially identify the structural features of interest. In settings with unobserved heterogene-

ity, dealing with unknown number of bidders typically requires some additional information.

For example, Freyberger and Larsen (2022) relied on observing the seller’s profit, Mbakop

(2017) and Luo and Xiao (2023) required observing more than two bids, while Hernndez,

Quint, and Turansick (2020) required additional information about the distribution of the

number of bidders. Instead, the approach developed in this paper restricts the “magnitude”

of unobserved heterogeneity, and only requires the analyst to observe, or conservatively set,

the lower and upper bounds on the number of bidders.

A few papers considered the problem of a seller selecting a reserve price in the presence

of ambiguity about the distribution of valuations. In the IPV setting, Aryal and Kim (2013)

proposed using the Max-Min criterion, motivating it from the Bayesian perspective. The

Max-Min reserve price is simply the maximizer of the lower bound on the profit. As an

alternative, Jun and Pinkse (2024) suggested maximizing the profit function corresponding

to the maximum entropy distribution within the identified set, arguing that it is the least-

informative choice. In this paper, we propose using the Min-Max-Regret criterion, which

originated Savage (1951) and was popularized in econometrics following the work on statis-

tical treatment rules by Manski (2004). We argue that such criterion is more in line with the

goal of profit maximization than the available alternatives. Since the sharp identified set for

the expected profit is intractable, we formulate and analytically solve two relaxations of the

Min-Max-Regret problem. The first relaxation admits all CDF-s of the highest valuation

between the available bounds. The second relaxation imposes an additional shape restric-

tion on the distribution of valuations, under which the CDF of the highest valuation is a

convex transformation of the CDF of the second-highest valuation. We solve both problems

analytically and show that the proposed reserves perform well in simulations.

This paper also contributes to the literature on art and wine auctions, including Ashen-
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felter (1989); Ashenfelter and Graddy (2003); Beggs and Graddy (2009); Ashenfelter and

Graddy (2011); McAndrew, Smith, and Thompson (2012), and Marra (2020). Although the

analysis has been somewhat restricted by data availability, a common finding in the litera-

ture is that the reserve prices are too low. We further confirm this finding empirically using

a large new dataset of art auctions and propose a theoretically justified way to choose a

higher reserve price in practice.

The rest of the paper is organized as follows. Section 2 gives a formal setup and presents

main identification results; Section 3 discusses the seller’s problem under ambiguity; Section

4 briefly discusses estimation and inference; Section 5 illustrates the proposed approach with

simulated data; Section 6 discusses data collection and applies the proposed methodology to

art auctions; and Section 7 concludes.

2 Identification in Ascending Auctions

2.1 Environment and Bidding Behavior

Consider an open ascending auction with N bidders with symmetric private values and a

secret reserve price. Let V1, . . . , VN ∈ V denote the valuations, V1:N , . . . , VN :N denote the

corresponding order statistics, and Fj:N denote the distribution of Vj:N , conditional on N ,

for j ∈ {1, . . . , N}. Let v0 ∈ V denote the value of unsold good to the seller, and r ∈ R+ the

reserve price. Following Aradillas-López, Gandhi, and Quint (2013), we impose the following

assumption on the bidding behavior.

Assumption 2.1 (Transaction Price). The transaction price is the greater of the reserve

price r and the second-highest valuation, VN−1:N .

In the standard button auction model with equilibrium play, Assumption 2.1 holds ex-

actly. In many empirical settings, it holds approximately if bidders do not “jump bid” at

the end of the auction. We find this assumption plausible in our dataset and discuss possible

relaxations in Section 7. Under Assumption 2.1, the seller’s realized profit is

(r − v0)1(VN :N 󰃍 r, VN−1:N < r)󰁿 󰁾󰁽 󰂀
only one active bidder

+(VN−1:N − v0)1(VN−1:N 󰃍 r)󰁿 󰁾󰁽 󰂀
at least two bidders

.

Taking expectation, conditional on N ,

πN(r) =

+∞󰁝

0

max(r, v)dFN−1:N(v)− v0 − (r − v0)FN :N(r). (1)
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Importantly, the expected profit only depends on the marginal distributions of the second-

highest and highest valuations. Since the auction ends before the highest bidder fully reveals

their valuation, the main identification problem is to obtain useful bounds on FN :N(·). We

start with the following general setting.

Assumption 2.2 (Conditional Independence). (i) In an auction with N bidders, their valu-

ations take the form Vj = g(U, εj), for some i.i.d. random variables ε1, . . . , εN ∈ R, random
vector U ∈ RdU , independent of the εj-s, conditional on N , and a measurable function

g : RdU × R → V. (ii) The map e 󰀁→ g(u, e) is weakly increasing, for all u.

Condition (i) states that valuations are symmetric and consist of a common component

U and independent private components εj, so that V1, . . . , VN are i.i.d., conditional on U .

In the context of art auctions, U may represent, for example, projected future resale value,

and εj — individual consumption value. We do not take a stance on whether the bidders

observe U or not. Condition (i) implies positive dependence between valuations:1 for any

measurable function h : V → R and a non-empty subset of bidders J ⊆ {1, . . . , N},

E

󰀥
󰁜

j∈J

h(Vj)

󰀏󰀏󰀏󰀏N
󰀦
= E

󰀗
E [h(Vj) |U,N ]|J |

󰀏󰀏󰀏󰀏N
󰀘
󰃍 E[h(Vj) |N ]|J |,

using the Law of Iterated Expectations and Jensen’s inequality. In particular, the above

implies Cov(h(Vi), h(Vj) |N) 󰃍 0, for all i ∕= j, for all h(·). Importantly, Condition (i)

restricts the sign of the dependence between the valuations but not its degree, allowing for

the two extreme cases of pure common and independent private values. In turn, Condition

(ii) will be used for tractability in the sequel.

Assumption 2.2 (i) allows to derive simple bounds on FN :N(·) in terms of the observed

FN−1:N(·). Consider a function φN : [0, 1] → [0, 1] defined implicitly via the relation:

u = NφN(u)
N−1 − (N − 1)φN(u)

N . (2)

This function maps the CDF of the second-highest value out of N i.i.d. draws to the

corresponding marginal CDF. The function u 󰀁→ φN(u) is strictly increasing and smooth on

(0, 1), and, as we show in Lemma A.1, the function u 󰀁→ φN(u)
N is convex, for all N 󰃍 1.

Proposition 1 (Bounds on FN :N Under Conditional Independence). Let Assumption 2.2

1By the de Finetti-Hewitt-Savage Theorem, Condition (i) is equivalent to V1, . . . , VN being part of an
infinitely exchangeable sequence. It is more restrictive than finite exchangeability precisely because of the
positive dependence, as explained below.
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(i) hold and the function φN be defined in (2). Then, for all v ∈ V,

φN(FN−1:N(v))
N 󰃑 FN :N(v) 󰃑 FN−1:N(v).

The equality FN :N(v) = φN(FN−1:N(v))
N , for all v, corresponds to independent private val-

ues, and the equality FN :N(v) = FN−1:N(v), for all v, corresponds to pure common value.

Aradillas-López, Gandhi, and Quint (2013) obtained the same bounds under a weaker

notion of positive dependence.2 We derive the bounds directly from conditional independence

and take them as a starting point of the analysis. To elaborate, note that under Assumption

2.2 (i), by the Law of Iterated Expectations:

FN :N(v) = E[φN(P (VN−1:N 󰃑 v |U,N))N |N ]

FN−1:N(v) = E[P (VN−1:N 󰃑 v |U,N) |N ].

Denoting µ = FN−1:N(v) and X = P (VN−1:N 󰃑 v |U,N), for any fixed v ∈ V , the bounds in

Proposition 1 correspond to the solutions of the following generalized moment problems:

min
P

{EP [φN(X)N ] : EP [X] = µ, P (X ∈ [0, 1]) = 1} = φN(µ)
N ;

max
P

{EP [φN(X)N ] : EP [X] = µ, P (X ∈ [0, 1]) = 1} = µ.
(3)

The lower bound corresponds to Jensen’s inequality and the upper bound to the so-called

Edmundson-Madansky’s inequality for the convex function u 󰀁→ φN(u)
N on u ∈ [0, 1] (Ed-

mundson, 1957; Madansky, 1959). In the absence of additional restrictions on the distribu-

tion of P (VN−1:N 󰃑 v |U), these bounds are sharp.

Since Assumption 2.2 (i) does not restrict the degree of dependence between valuations,

the bounds in Proposition 1 are typically very wide. However, the assumption of pure

common or independent private values may not be realistic in many empirical settings, and

it is desirable to control thedependence between valuations more precisely. To this end, we

additionally restrict the variance of P (VN−1:N 󰃑 v |U,N), conditional on N , denoted:

DN(v) = E[(P (VN−1:N 󰃑 v |U,N)− FN−1:N(v))
2 |N ]. (4)

The variance corresponds to the squared L2(P ) distance between the conditional and un-

conditional CDFs of VN−1:N , thus providing a measure of the “magnitude” of the common

2The authors assume that the valuations are exchangeable and the function f(k) = P (Vi 󰃑 v |#{j ∕=
i : Vj 󰃑 v} = k) is non-decreasing in k. Lemma 1 in the aforementioned paper shows that conditional
independence implies the stated property.
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component in valuations. Since P (VN−1:N 󰃑 v |U,N) is a random variable supported within

[0, 1], the variance DN(v) takes values in [0, FN−1:N(v)(1−FN−1:N(v))]. The marginal cases,

DN(v) = 0 and DN(v) = FN−1:N(v)(1− FN−1:N(v)), correspond to independent private val-

ues and pure common value correspondingly.3 Thus, bounding the variance function DN(v)

away from the extremes allows to control the degree of dependence between valuations.

To obtain an interpretable expression for DN(v), we invoke Assumption 2.2 (ii). Under

this assumption, the second-highest valuation is VN−1:N = g(U, εN−1:N), so letting fU |N

denote the density of U , conditional on N , we have

E[P (VN−1:N 󰃑 v |U,N)2 |N ] =

󰁝
P (g(u, εN−1:N) 󰃑 v |N)2fU |N(u)du

= P (g(U, εN−1:N) 󰃑 v, g(U, ε̃N−1:N) 󰃑 v |N)

= CN(FN−1:N(v), FN−1:N(v)),

where ε̃N−1:N is an independent copy of εN−1:N , and CN : [0, 1]2 → [0, 1] is the copula

function of the vector (VN−1:N , ṼN−1:N) = (g(U, εN−1:N), g(U, ε̃N−1:N)), conditional on N .4

The copula function captures the dependence between the second highest valuation in two

identical auctions with the same common component and two independent draws of the

private components.5 Letting C0 : [0, 1]2 󰀁→ [0, 1] denote the independence copula, defined

as C0(u, v) = uv, the variance DN(v) can be written as:

DN(v) = CN(FN−1:N(v), FN−1:N(v))− C0(FN−1:N(v), FN−1:N(v)).

This expression motivates the following assumption.

Assumption 2.3 (Departure from IPV and Pure Common Values). Let Cρ : [0, 1]2 →
[0, 1] be a copula function, parametrized by ρ ∈ [0, 1] such that: (i) C0(u1, u2) = u1u2,

C1(u1, u2) = min(u1, u2); (ii) for each u, ρ 󰀁→ Cρ(u, u) is non-decreasing; (iii) for each ρ,

3Notice DN (v) = 0, for all v, implies that P (VN−1:N 󰃑 v |U,N) = FN−1:N (v) almost surely, which,
under Assumption 2.2 (i), implies that either U is constant or Vj = g(εj), corresponding to the i.i.d.
valuations. On the other hand, DN (v) = FN−1:N (v)(1 − FN−1:N (v)), for all v, can only be attained if
P (VN−1:N 󰃑 v |U,N) ∈ {0, 1} such that P ({P (VN−1:N 󰃑 v |U,N) = 1} |N) = FN−1:N (v), which can only
happen if VN−1:N is a deterministic function of U , corresponding to the pure common values.

4The copula function of random variables X and Y with a joint CDF FXY is defined as a function
C : [0, 1]2 → [0, 1] satisfying FXY (x, y) = C(FX(x), FY (y)). If X and Y are continuous, the copula represents
the joint distribution of the random variables FX(X) and FY (Y ), which are marginally Uniform [0, 1].

5If the researcher observes two repeated auctions of identical goods with independent draws of N bidders,
and the transaction price reveals second highest valuation in each of the auctions, the copula function is
identified from the data. Pursuing this formally is beyond the scope of the paper.
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(Cρ(u, u))
′ 󰃍 max{2u−Cρ(u,u)

1−u
, Cρ(u)

u
}. The variance DN(v), defined in (4), satisfies:

DN(v) 󰃑 DN(v) 󰃑 DN(v)

with
DN(v) = Cρ(FN−1:N(v), FN−1:N(v))− C0(FN−1:N(v), FN−1:N(v))

DN(v) = Cρ(FN−1:N(v), FN−1:N(v))− C0(FN−1:N(v), FN−1:N(v)),

for some 0 󰃑 ρ 󰃑 ρ 󰃑 1.

Intuitively, ρ may be interpreted as the share of the common component in valuations,

and ρ, ρ are lower and upper bounds on this share. Choosing ρ > 0 ensures a non-trivial

common component, and ρ < 1 ensures a non-trivial private component. Setting ρ = ρ fixes

DN(v) but leaves the joint distribution of (VN−1:N , ṼN−1:N) outside of the diagonal (v, v)

completely unspecified. In such case, without further assumptions, the CDF of the highest

valuation FN :N(v) is not point identified. We highlight that Assumption 2.3 does not impose

a specific dependence structure on the valuations; it simply provides a coherent way to choose

the bounding functions DN(v) and DN(v) for the analysis. Our results do not rely on the

specific parametric form of Cρ(u, u) in any way.

Condition (i) of the Assumption maintains independent private values and pure common

value as the marginal cases; Condition (ii) ensures that the assumed bounds are ordered

properly; Condition (iii) is a shape restriction that guarantees that the bounds derived in

Theorem 1 below are plausible CDFs. In practice, it suffices to choose a function Cρ(u, u)

that interpolates between u and u2 depending on the value of ρ ∈ [0, 1]. Lemma A.2 in the

Appendix verifies that natural choices, such as Cρ(u, u) = ρu + (1 − ρ)u2, Cρ(u, u) = u2−ρ,

or Cρ(u, u) corresponding to the bivariate Gaussian copula with correlation ρ ∈ [0, 1], satisfy

all of the stated assumptions. Any other bivariate copula satisfying the stated assumptions

and re-parametrized appropriately can be used (see, e.g., Table 4.1. in Nelsen, 2006, for the

examples of Archimedian copulas).

2.2 Bounding CDF of The highest Valuation and Expected Profit

Under Assumptions 2.2 and 2.3, pointwise sharp bounds on FN :N can be obtained by solving

generalized moment problems similar to the ones in (3) with an extra constraint of the form

c1 󰃑 Var(X) 󰃑 c2. Using geometric arguments of Kemperman (1968), we show that both

bounds can be computed by solving univariate convex optimization problems.

Theorem 1 (CDF Bounds Conditional on N). Let Assumptions 2.2 and 2.3 hold. Then,

8



for each v ∈ V,
ψ

N
(FN−1:N(v)) 󰃑 FN :N(v) 󰃑 ψN(FN−1:N(v)),

where:

ψ
N
(FN−1:N(v)) = min

s∈[ c1
1−µ

,µ]

󰁱
φN(µ− s)N c1

c1+s2
+ φN

󰀃
µ+ c1

s

󰀄N s2

c1+s2

󰁲
;

ψN(FN−1:N(v)) = max
s∈[µ− c2

1−µ
,µ+

c2
µ ]

󰁱
µ− µ(1−µ)−c2

s(1−s)
(s− φN(s)

N)
󰁲
,

with µ = FN−1:N(v), c1 = DN(v), and c2 = DN(v). The minimization problem is strictly

convex, and the maximization problem is strictly concave. Moreover, the bounding functions

ψ
N
(·) and ψN(·) are monotonically increasing and smooth in their argument.

For ρ = 0 and ρ = 1, the bounds coincide with those in Proposition 1, because they

solve the moment problems in (3). For any 0 < ρ 󰃑 ρ < 1, the bounds in Theorem 1 are

strictly tighter. If the only information available to the econometrician is FN−1:N (i.e., only

the transaction price is observed), the bounds are pointwise sharp. Since the bounds are

monotonically increasing, they are plausibly sharp uniformly over v ∈ V , although it is hard

to show formally. Additionally, we note that certain CDFs within the bounds do not belong

to the sharp identified set because they cannot correspond to the CDF of order statistics

of conditional i.i.d. valuations. For example, if FN−1:N(v) does not have atoms (“jumps”),

FN :N(v) cannot have atoms either, so all such CDFs will be excluded form the identified

set. Although the sharp identified set is very hard to describe, the proposed bounds are

sufficiently informative, as we show in the sequel.

Theorem 1 implies the following bounds on the expected profit.

Theorem 2 (Bounds on Expected Profit Conditional on N). Suppose Assumptions 2.1, 2.2,

and 2.3 hold. Let ψ
N
(FN−1:N(v)) and ψN(FN−1:N(v)) denote the lower and upper bounds on

FN :N(v) in Theorem 1. Then, the expected profit, conditional on N , is bounded by:

πN(r) 󰃍
󰁝 ∞

0

max{r,v}dFN−1:N(v)− v0 − ψN(FN−1:N(r))(r − v0);

πN(r) 󰃑
󰁝 ∞

0

max{r,v}dFN−1:N(v)− v0 − ψ
N
(FN−1:N(r))(r − v0),

for all r 󰃍 v0.

As in Theorem 1, the bounds are sharp point-wise in r and plausibly sharp uniformly.

Likewise, many profit functions within the bounds cannot be attained under the stated

assumptions. The bounds on expected profit for r below v0 can be obtained by switching
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the roles of ψ
N
(·) and ψN(·), but they are irrelevant because it is never optimal to set the

reserve price below v0.
6

2.3 Unknown Number of Bidders

In ascending auctions, the exact number of bidders may often be unknown to the econome-

trician and potentially even to the seller. In this section, we show that the above analysis

can be easily extended to the case when only bounds on the number of bidders are available.

Assumption 2.4 (Unknown Number of Bidders). The number of bidders N is unknown but

satisfies N 󰃑 N 󰃑 N for some known 2 󰃑 N 󰃑 N .

In such context, a natural objective function is the unconditional expected profit. Taking

expectations over N in (1) yields:

E[πN(r)] =

󰁝 ∞

0

max{r,v}dF2(v)− v0 − F1(r)(r − v0), (5)

where
F2(v) = E[FN−1:N(v)] = P (VN−1:N 󰃑 v);

F1(v) = E[FN :N(v)] = P (VN :N 󰃑 v)

denote the marginal distributions of VN−1:N and VN :N , correspondingly. Although N is not

observed, under Assumption 2.1, the marginal distribution F2(v) is identified by the data,

so the identification problem is to bound F1(·). To this end, we apply the same ideas as in

the preceding subsection.

By Lemma A.1 in Appendix, for each t ∈ [0, 1], the map N 󰀁→ φN(t)
N , with φN(·) defined

in (2), is increasing. Using this fact and the Law of Iterated Expectations, the marginal CDF

of VN :N is bounded by

E[φN(P (VN−1:N 󰃑 v |U,N))N ] 󰃑 F1(v) 󰃑 E[φN(P (VN−1:N 󰃑 v |U,N))N ]. (6)

and, additionally, we know that

F2(v) = E[P (VN−1:N 󰃑 v |U,N)].

Let

D(v) = E[(P (VN−1:N 󰃑 v |U,N)− F2(v))
2] (7)

6This follows directly from the first-order condition for maximizing πN (r) in (1).
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be the unconditional analog of DN(v) defined in (4). In order to bound D(v) away from

independent private and pure common values, we modify Assumptions 2.2 and 2.3 as follows.

Assumption 2.2+ (Conditional Independence). In an auction with N bidders, (i) valuations

take the form Vj = g(U, εj), for some i.i.d. random variables ε1, . . . , εN ∈ R, random vector

U ∈ RdU , and a measurable function g : RdU × R → V. (ii) The map e 󰀁→ g(u, e) is weakly

increasing, for all u. (iii) (U,N) is jointly independent of (ε1, . . . , εN).

Notice that Condition (iii) does not restrict the dependence between the common com-

ponent and the number of bidders, but requires full independence of the private components.

In the context of art auctions, this assumption allows for a situation that artworks by more

popular artists attract more bidders, but does not allow those bidders to have a different

distribution of tastes. Under Assumption 2.2+, repeating the arguments in the preceding

section unconditionally, the variance D(v) can be expressed as:

D(v) = C(F2(v), F2(v))− C0(F2(v), F2(v)),

where C : [0, 1]2 → [0, 1] denotes the copula of (VN−1:N , ṼN−1:N) = (g(U, εN−1:N), g(U, ε̃N−1:N)),

and C0 the independence copula.

Assumption 2.3+ (Departure from IPV and Pure Common Values). Let Cρ : [0, 1]2 →
[0, 1] be a copula function, parametrized by ρ ∈ [0, 1] such that: (i) C0(u1, u2) = u1u2,

C1(u1, u2) = min(u1, u2); (ii) for each u, ρ 󰀁→ Cρ(u, u) is non-decreasing; (iii) for each ρ,

(Cρ(u, u))
′ 󰃍 max{2u−Cρ(u,u)

1−u
, Cρ(u)

u
}. The variance D(v), defined in (7), satisfies:

D(v) 󰃑 D(v) 󰃑 D(v)

with
D(v) = Cρ(F2(v), F2(v))− C0(F2(v), F2(v))

D(v) = Cρ(F2(v), F2(v))− C0(F2(v), F2(v)),

for some 0 󰃑 ρ 󰃑 ρ 󰃑 1.

Note that since C(F2(v), F2(v)) = E[CN(FN−1:N(v), FN−1:N(v))], by the Law of Iterated

Expectations, Assumption 2.3 implies Assumption 2.3+. The interpretation of ρ, ρ and the

arguments leading to the choice of bounding functions remain the same. The following

results are direct analogs of Theorems 1 and 2.

Theorem 3 (CDF Bounds With Unknown N). Let Assumptions 2.2+ and 2.3+ hold. Then,

for each v ∈ V,
ψ

N
(F2(v)) 󰃑 F1(v) 󰃑 ψN(F2(v)),

11



where:
ψ

N
(F2(v)) = min

s∈[ c1
1−µ

,µ]

󰁱
φN(µ− s)N c1

c1+s2
+ φN

󰀃
µ+ c1

s

󰀄N s2

c1+s2

󰁲
;

ψN(F2(v)) = max
s∈[µ− c2

1−µ
,µ+

c2
µ ]

󰁱
µ− µ(1−µ)−c2

s(1−s)
(s− φN(s)

N)
󰁲
,

with µ = F2(v), c1 = D(v), and c2 = D(v). The minimization problem is strictly convex,

and the maximization problem is strictly concave. Moreover, the bounding functions ψ
N
(·)

and ψN(·) are monotonically increasing and smooth in their argument.

Theorem 4 (Bounds on Expected Profit With Unknown N). Let Assumptions 2.1, 2.2+,

2.3+, and 2.4 hold. Let F1(·) and F2(·) denote the marginal distributions of VN :N and VN−1:N

correspondingly. Then, F2(·) is identified by the data, and, for each r:

E[πN(r)] 󰃍
󰁝 ∞

0

max{r,v}dF2(v)− v0 − ψN(F2(r))(r − v0);

E[πN(r)] 󰃑
󰁝 ∞

0

max{r,v}dF2(v)− v0 − ψ
N
(F2(r))(r − v0),

where ψ
N
(·) and ψN(·) are the bounding functions defined in Theorem 3.

As in Theorems 1 and 2, the bounds are point-wise sharp. The lower bound can be

binding only if N = N , and the upper bound — only if N = N , almost surely.

3 Optimal Reserve Prices

3.1 Resolving Ambiguity

Consider the problem of the seller setting a reserve price to maximize expected profit from an

auction. Under our assumptions on information structure and bidding behavior, the expected

profit function is only partially identified, so the target is ambiguous. In this section, we

discuss existing approaches to resolving the ambiguity and advocate for using the so-called

Min-Max-Regret approach.

Let π(·) denote the true expected profit function, Π0 — the set of all plausible profit func-

tions, and R0 — the corresponding set of optimal reserve prices. There are three prevalent

approaches to resolving ambiguity in the literature: Bayesian, Max-Min, and Min-Max-

Regret; see, e.g., Manski (2022). The Bayesian approach is to assume a prior distribution Q

over Π0 and solve:

sup
r∈R0

󰁝

Π0

π(r)dQ(π).

12



In our setting, Π0 represents the sharp identified set for π(·), so any prior within the identified

set cannot be updated based on the data. On the other hand, the prior directly affects the

proposed solution, and by using different priors (e.g., point masses on the elements of Π)

one can recover any point r ∈ R0 as the “optimal” solution. Thus, the Bayesian approach

directly imposes further restrictions on the model and is conceptually not helpful in the

present setting. The Max-Min (MM) approach is to solve:

sup
r∈R0

inf
π∈Π0

π(r),

i.e., maximize the lower bound on the expected profit function. Intuitively, this corresponds

to setting the reserve price cautiously, which may not align with the goals of the auction

house. Indeed, if the lot is unsold, the marginal cost associated with organizing its resale is

likely negligible, compared to the selling price.7 Nevertheless, as we show in Section 5, the

max-min solution may perform well.

The Min-Max-Regret (MMR) approach is to solve:

inf
r∈R0

sup
π∈Π0

{π(r∗π)− π(r)},

where r∗π denotes an optimal reserve price under the profit function π. To gain intuition, let

φ∗ : Π0 → R, given by φ∗(π) = π(r∗π), return the maximum of π, and for each r ∈ R0, let

φr : Π0 → R, given by φr(π) = π(r), evaluate π at a given reserve price r. Then, the MMR

problem can be equivalently stated as:

inf
r∈R0

sup
π∈Π0

|φ∗(π)− φr(π)|. (8)

That is, choosing r is equivalent to choosing a functional φr(·) as close as possible to the

profit-maximizing functional φ∗(·) uniformly over unknown π ∈ Π0. Conceptually, this is in

line with the goal of profit maximization under ambiguity.8

The MMR problem is formulated with the sharp identified sets Π0 and R0. When these

are intractable, one may consider a “relaxed” problem with some outer sets Π and R:

inf
r∈R

sup
π∈Π

|φ∗(π)− φr(π)|. (9)

The interpretation remains the same: one is choosing a functional φr(·) as close as possible to
7In our dataset, the auction houses may sell nearly fifty lots in one auction.
8In some settings, the MM and MMR solutions may coincide. We find that it is typically not the case in

our setting, and both solutions may perform well in practice; see Section 5.

13



the profit-maximizing functional φ∗(·) uniformly over unknown π ∈ Π. Intuitively, if Π\Π0

is not too large, and φ∗(·) is well-behaved on Π\Π0, the solutions of (8) and (9) should be

close to each other. Therefore, the relaxed MMR criterion in (9) provides a reasonable way

of choosing the reserved price under ambiguity.

3.2 The Min-Max-Regret Problem

Theorem 1 derived lower and upper bounds on FN :N under Assumptions 2.2 and 2.3. While

the bounds are point-wise sharp, certain CDFs between the bounds may not be admissible

under the conditional independence assumption. For example, if FN−1:N does not have flat

regions or jumps, then FN :N cannot have those either. Unfortunately, the sharp identified set

for FN :N and thus for the expected profit function is hard to characterize, which makes the

MMR problem in (8) intractable. In this section, we consider two relaxations of the MMR

problem that can be solved analytically. Our results take bounds on FN :N as given, and hold

for any bounds satisfying the stated assumptions going beyond the setting of Theorem 1. The

discussion is presented conditional on N , but the results apply similarly to the unconditional

case with obvious modifications of the assumptions.

3.2.1 CDFs Between the Bounds

First, we consider the following setting.

Assumption 3.1 (Relaxed MMR). (i) valuations are exchangeable; (ii) The transaction

price is the greater of the reserve price and the second-highest valuaion; (iii) The CDF of the

highest value satisfies F (v) 󰃑 FN :N(v) 󰃑 F (v) for some known weakly increasing functions

F (v), F (v) such that 0 󰃑 F (v) 󰃑 F (v) 󰃑 FN−1:N(v), for all v ∈ V.

Condition (i) assumes that valuations are symmetric but does not impose conditional

i.i.d. structure as in Assumption 2.2; Condition (ii) is a re-statement of Assumption 2.1; and

Condition (iii) states that any CDF FN :N between the available bounds is admissible (e.g.

for the bounds in Theorem 1). To ensure coherency with Condition (i), Lemma A.5 in the

Appendix shows that any pair (FN−1:N(v), FN :N(v)) with FN :N(v) between the bounds can

be the CDF’s of the top two order statistics of exchangeable random variables.

Assumption 3.1 defines a set of expected profit functions for the relaxed MMR problem.

Plugging F (r) and F (r) instead of FN :N(r) in Equation (1) yields the respective lower and

upper bounds on the profit, but not all functions between the bounds are admissible profit

functions. For example, expected profit cannot arbitrarily “jump” up because FN :N(r) must

be non-decreasing. Nevertheless, the relaxed MMR solution is easy to characterize.
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Theorem 5 (Relaxed MMR Solution). Let Assumption 3.1 hold. Denote the expected profit

in (1) by πN(r;FN−1:N , FN :N). Then, for any r 󰃍 v0, the max-regret is given by R(r) =

max{R1(r), R2(r)}, where:

R1(r) = max
v0󰃑v󰃑r

πN(v;FN−1:N , F
∗
1,r)− πN(r;FN−1:N , F

∗
1,r)

R2(r) = max
v󰃍r

πN(v;FN−1:N , F
∗
2,r)− πN(r;FN−1:N , F

∗
2,r)

with F ∗
1,r(v) and F ∗

2,r(v) given by:

F ∗
1,r(v) = 1(v < r)F (v) + 1(v 󰃍 r)F (v) (10)

F ∗
2,r(v) = 1(v < r)F (v) + 1{r 󰃑 v < v̄(r)}F (r) + 1{v 󰃍 v̄(r)}F (v) (11)

where v̄(r) = min{v : F (v) 󰃍 F (r)}. The Min-Max-Regret reserve is r∗ = argminr󰃍v0 R(r).

The proof is straightforward. Given any reserve r, the max-regret is attained either

below or above it. We show that the max-regret realizes below r for a profit function that

“jumps down” at r, corresponding to the CDF F ∗
1,r, and above r for a profit function that

increases “as much as possible” after r, corresponding to the CDF F ∗
2,r. Solving for the

MMR optimal reserve r∗ numerically is straightforward. In fact, since R1(r) is increasing

and R2(r) is decreasing (at least locally around the point of their intersection), r∗ solves

∆(r) = R1(r)−R2(r) = 0, where ∆(r) is smooth and locally increasing.

3.2.2 CDFs with a Shape Restriction

Next we consider an additional restriction that induces more structure on the problem.

Assumption 3.2 (Convex MMR). (i) Valuations are exchangeable; (ii) The transaction

price is the greater of the reserve price and the second-highest valuation; (iii) The CDF of

the highest valuation satisfies ψ(FN−1:N) 󰃑 FN :N(v) 󰃑 ψ(FN−1:N) for some increasing, twice

differentiable, convex functions ψ,ψ : [0, 1] → [0, 1]; (iv) Letting fVN :N
(v) and fVN−1:N

(v)

denote the density functions of the highest and second-highest valuations, the likelihood ratio

fVN :N
(v)/fVN−1:N

(v) is increasing in v.

Conditions (i)–(ii) are the same as before. Condition (iii) imposes a shape restriction on

the bounds on FN :N , which is satisfied, e.g., by the bounds in Theorems 1 and 3. Condition

(iv), known as the likelihood ratio dominance, is a strong form of stochastic dominance.

Intuitively, it means that if an observer sees a realization V = v of a random variable drawn

either from fVN :N
or from fVN−1:N

but does not know with certainty which one, then the
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higher V = v is, the more likely it was drawn from fVN :N
rather than fVN−1:N

. Importantly,

Condition (iv) by itself does not restrict the strength of dependence between valuations, and

it is easy to verify that it holds under IPV and pure common values. It also holds for many

commonly used copulas, such as Gaussian, Clayton, or Frank copulas.9

As shown in Lemma A.6 in the Appendix, exchangeability and likelihood ratio dominance

imply that

FN :N(v) = gN(FN−1:N(v)),

for some convex function gN : [0, 1] → [0, 1], for all v ∈ V . This fact substantially refines

the set of admissible CDFs between the bounds and allows to solve the corresponding MMR

problem analytically, as we do below.

Theorem 6 (Convex MMR Solution). Let Assumption 3.2 hold. Denote the expected profit

in (1) by πN(r;FN−1:N , FN :N). Then, for any r 󰃍 v0, the max-regret is given by R(r) =

max{R1(r), R2(r)}, where:

R1(r) = max
v0󰃑v󰃑r

πN(v;FN−1:N , F
∗
1,r)− πN(r;FN−1:N , F

∗
1,r)

R2(r) = max
v󰃍r

πN(v;FN−1:N , F
∗
2,r)− πN(r;FN−1:N , F

∗
2,r)

where F ∗
j,r(v) = gj,r(FN−1:N(v)) for convex functions gj : [0, 1] → [0, 1] defined as follows.

Denoting ur = FN−1:N(r),

g1,r(u) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

ψ(u) u 󰃑 u1,r

a1,ru+ b1,r u1,r < u 󰃑 ur

ψ(u) u > ur,

where u1,r solves ψ(ur) = ψ
′
(ur)(ur −u1,r)+ψ(u1,r), a1,r = ψ

′
(ur), and b1,r = ψ(ur)−a1,rur.

Further:

g2,r(u) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

ψ(u) u 󰃑 ur

a2,ru+ b2,r ur < u 󰃑 u2,r

ψ(u) u > u2,r,

where ū2,r solves ψ(ū2,r)−ψ
′
(ur)(ū2,r −ur) = ψ(ur), a2,r = ψ

′
(ur), and b2,r = ψ(ur)−a2,rur.

The Min-Max-Regret reserve is r∗ = argminr󰃍v0 R(r).

9See e.g. Nelsen (2006) or Joe (2014) for reviews of the copula theory. The likelihood ratio dominance is
equivalent to [VN :N | a 󰃑 VN :N 󰃑 b] 󰃍st [VN−1:N | a 󰃑 VN−1:N 󰃑 b], for any a, b ∈ V with a < b, where 󰃍st

denotes first-order stochastic dominance; see, e.g., Chapter 1.C. in Shaked and Shanthikumar (2007).
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The proof idea is similar to that of Theorem 5, except the “worst-case” CDFs F ∗
1,r and

F ∗
2,r are now required to be convex transformations of FN−1:N . The transformation g1,r

corresponds to the CDF that decreases “as fast as possible” just below r, and g2,r to the

CDF that increases “as fast as possible” above r, while preserving convexity. As in Theorem

5, solving for r∗ numerically is straightforward.

4 Estimation and Inference

For brevity, the exposition below treats the number of bidders N as known and fixed, but the

extension to varying and/or unknown N is immediate. We assume that the econometrician

has access to a sample of n independent auctions, (Pi, Xi)
n
i=1, where Xi ∈ X is vector

of auction-specific covariates, and Pi ∈ R+ is the transaction price in auction i, which is

assumed equal to the second-highest valuation VN−1:N,i.

4.1 Bounds on Expected Profit

The profit bounds in Theorem 2 are known, deterministic functions of the observable dis-

tribution FN−1:N(v) = P (VN−1:N 󰃑 v |N). The best approach to estimating this distri-

bution depends on the context. In addition to the number of bidders N , one may want

to condition on a vector of covariates X. If the dataset is small, or X is very rich, non-

parametric estimation may be imprecise. In such cases, one may impose a flexible parametric

model for P (VN−1:N 󰃑 v |N,X), similar to Athey, Levin, and Seira (2011), or assume that

P (VN−1:N 󰃑 v |N,X) depends on X only through an index X ′γ and employ, e.g., the semi-

parametric MLE of Ai (1997). When non-parametric estimation is suitable, the bandwidths

may be selected using a reference parametric model; see Ichimura and Todd (2007).

Letting π(r;FN−1:N) and π(r, FN−1:N) denote the profit bounds in Theorem 2 and F̂N−1:N

be a suitable estimator for FN−1:N , the profit bounds are estimated as:

π̂(r) = π(r; F̂N−1:N);

π̂(r) = π(r; F̂N−1:N).
(12)

Since the bounding functions ψ
N

and ψN are convex, the plug-in estimators for the bounds

are generally biased downward. The bias may be corrected using standard jackknife or boot-

strap techniques; see, e.g., Wasserman (2006). In turn, point-wise and uniform confidence

bands can be constructed using delta-method.

In our empirical application, there are no continuous covariates, so we use the sample
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analog estimator F̂N−1:N . Additionally, we find that the finite-sample bias of ψ
N
(F̂N−1:N)

and ψN(F̂N−1:N) is negligible given the sample size and thus do not use any bias-correction

methods. Appendix B spells out the asymptotic distributions of π̂(r) and π̂(r) in this case.

4.2 Bounds on Expected Profit under MMR Reserve Price

First, consider estimating the MMR optimal reserve price r∗ obtained in Theorems 5 or 6.

Letting Rj(r;FN−1:N) for j ∈ {1, 2} denote the corresponding maximum regrets, the MMR

optimal reserve price r∗ solves:10

∆(r;FN−1:N) ≡ R1(r;FN−1:N)−R2(r;FN−1:N) = 0.

Denoting ∆̂(r) = ∆(r; F̂N−1:N), a natural estimator r̂ for r∗ solves:

∆̂(r̂) = 0. (13)

Under the standard regularity conditions, consistency of r̂ follows from the uniform consis-

tency of F̂N−1:N and continuity of F 󰀁→ ∆(·;F ) with respect to the sup-norms. In Appendix

B, using the mean-value expansion of (13) around r∗ and continuity of F 󰀁→ ∆′(·;F ) with

respect to the sup-norms, we further establish that

√
n(r̂ − r∗) →d N (0, Vr) . (14)

Next, consider the expected profit under MMR reserve price, π∗ = πN(r
∗). It is bounded

by π∗ ∈ [π∗, π∗] ≡ [πN(r
∗), πN(r

∗)]. The natural estimators for π̂∗ and π̂
∗
are:

π̂∗ = π̂(r̂);

π̂
∗
= π̂(r̂),

(15)

where π̂ and π̂ are defined in (12), and r̂ in (13). Consistency of these estimators follows

immediately from consistency of r̂ and continuity of the maps F 󰀁→ π(·;F ) and F 󰀁→ π(·;F )

with respect to the sup-norms. For the asymptotic distribution, consider an expansion:

√
n(π̂∗ − π∗) = {

√
n(π̂(r̂)− π(r̂))−

√
n(π̂(r∗)− π(r∗))} (I)

+
√
n(π̂(r∗)− π(r∗)) (II)

+
√
n(π(r̂)− π(r∗)). (III)

(16)

10That is, the minimizer of R(r) = max(R1(r), R2(r)) is given by the intersection of R1(r) and R2(r).
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In Appendix B, using stochastic equicontinuity arguments, we show that term (I) converges

in probability to zero. The term (II) + (III) is easily seen to be asymptotically Normal.

Applying similar arguments to the upper bound estimator π̂
∗
, it follows that:

√
n(π̂∗ − π∗) →d N(0, Vπ∗);

√
n(π̂

∗ − π∗) →d N(0, Vπ∗).
(17)

Then, given consistent estimators V̂π and V̂π, a (1 − α) confidence interval for π∗ ∈ [π∗, π∗]

can be constructed as:

󰀵

󰀷π̂∗ − z1−α

󰁶
V̂π∗

n
, π̂

∗
+ z1−α

󰁶
V̂π∗

n

󰀶

󰀸 . (18)

Such confidence interval is uniformly asymptotically valid over the set of distributions bounded

away from point identification; see Imbens and Manski (2004), Stoye (2009), and Canay and

Shaikh (2017) for related discussions. In our setup, point identification is ruled out by

construction of the bounds, so the above confidence interval is appropriate.

The asymptotic variances in (17) are very cumbersome due to the dependence between

the terms (II) and (III) in (16). However, the above discussion also implies that the

distributions of
√
n(π̂∗ − π∗) and

√
n(π̂

∗ − π∗) are continuous in the underlying distribution

of the data, so a valid confidence interval can also be constructed using bootstrap as follows.

Algorithm 1 (Bootstrap CI).

1. Using the original sample, compute π̂∗ and π̂
∗
according to (15).

2. Draw a large number of bootstrap samples (P ∗
i,b, X

∗
i,b)

n
i=1, for b = 1, . . . , B, and compute

π̂∗
b and π̂

∗
b according to (15), for each b.

3. Letting q̂
1−α

denote the (1−α) empirical quantile of {
√
n(π̂∗

b − π̂∗)}Bb=1, and q̂α denote

the α empirical quantile of {
√
n(π̂

∗
b − π̂

∗
)}Bb=1, compute the confidence interval:

󰀥
π̂∗ −

q̂
1−α√
n
, π̂

∗ − q̂α√
n

󰀦
. (19)

We remark that although Step 2 involves solving the MMR problem for each bootstrap

sample, the procedure is computationally simple.
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5 Monte Carlo Experiments

In this section, we illustrate performance of the proposed approach in a controlled environ-

ment. First, we show that the CDF bounds in Theorems 1 and 3 and the implied profit

bounds in Theorems 2 and 4 are substantially tighter than those previously available in the

literature. Second, we show that choosing the reserve price using Min-Max-Regret criteria

in Theorems 5 and 6, combined with the new tighter identified sets, may lead to significant

increase in seller’s profit relative to the status quo.

5.1 Simulation Design

The simulation design is calibrated to four stylized facts in our empirical application.

1. The auction houses report the low and the high estimates of each lot’s value. These

estimates are crude and not necessarily backed by any market or historical research.

Normalizing the high estimate to 1, the low estimate is around 2/3, on average. We

consider the value of unsold good to the seller, v0, to be either equal to the low estimate,

v0 = 2/3, or the mid point between low and high estimates, v0 = 5/6.

2. The reserve price is secret and does not exceed the lot’s low estimate. In simulations,

we set the reserve price to zero.

3. There is significant variation in the number of active bidders per auction. We draw

the number of bidders randomly for each auction from the set N ∈ {2, 3, . . . , 10}, and
use N = 2 and N = 10 throughout the simulations.

4. According to the bidding guidelines, the minimal bid increment is 10% of the standing

bid, but this rule is not strictly enforced. We simulate auctions as follows. Given the

initial set of N bidders, the first bid by a randomly drawn bidder is cast at 5% of their

valuation. At each subsequent iteration, an active bidder is drawn at random from

the pool of remaining bidders, whose valuations are above the standing bid. With

probability 1− λ, the new bid is equal to 1.1 of the standing bid, and with probability

λ, the new bid is drawn uniformly between the standing bid and 1.1 of the standing

bid. If the new bid is above the active bidder’s valuation, the bidder is eliminated,

and a new bidder is drawn from the pool of remaining bidders. The iterations proceed

until only one bidder remains.
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5.2 Simulation Results

5.2.1 Distribution of The Highest Valuation and Expected Profit

First, we illustrate the CDF bounds from Theorems 3 and 4. The valuations are generated

as log(Vj) = U + εj, where U ∼ N(µU , σ
2
U) and the distribution of εj is such that εN−1:N ∼

N(µε, σε). The parameters µU , µε, σU , and σε are chosen to match the average transaction

price in the data, E[VN−1:N ] = 1.35. The copula function used to define the bounds in

Assumption 2.3 matches the above data-generating process and corresponds to ρ = 0.8.

Figure 1 presents bounds on the CDF of VN :N (unconditionally), and the corresponding

bounds on expected profit. The black solid line represents the true CDF, and the black

dashed lines — the IPV and pure common value bounds. The blue dashed lines represent

lower and upper bounds with ρ = ρ = 0.8, and the green lines — with ρ = 0.7 and ρ = 0.9.

The two main takeaways are: (i) the proposed bounds are substantially tighter then the IPV

and common value bounds even for a relatively wide range of ρ ∈ [ρ, ρ] = [0.7, 0.9]; and (ii)

even when correctly specifying ρ = ρ = ρ = 0.8, we are still far from point identification.

We find very similar results conditional on N .

5.2.2 Optimal Reserve Prices

Next, we compare the MMR reserves of Theorems 5 and 6 with the MM reserves and status

quo of r = v0. We consider ρ = 0, ρ = 1 and ρ = ρ = 0.8, and v0 = 5/6.

Figure 2 presents the results. The left panel depicts the MM reserves, which maximize

the corresponding profit lower bounds. With ρ = 0, ρ = 1, the lower bound is monotonically

decreasing, so the MM reserve is v0. With ρ = ρ = 0.8, the MM reserve is 1.1, which

appears reasonable and is much closer to the true optimum of 1.33. The right panel depicts

the Max-Regret functions from Theorems 5 and 6 and corresponding MMR reserves. With

ρ = 0, ρ = 1, we find that both Relaxed MMR and Convex MMR reserves coincide with v0.

In contrast, with ρ = ρ = 0.8, the relaxed MMR reserve appears close to MM (1.11 vs. 1.10),

while the convex MMR reserve is nearly at the optimum (1.31 vs. 1.33). Table 1 reports

percentage gains in expected profit and shows additionally that the Convex MMR solution

with the common component bounds set at ρ = 0.7 and ρ = 0.9 is able to realize nearly all

available profit gains.

Thus, we find that the MM, relaxed MMR, and especially convex MMR reserves com-

puted with the new tight bounds on the CDF of the highest valuation are close to the

optimum and result in a sizable increase in expected profit.
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Figure 1: Simulated bounds on the CDF of the highest valuation and expected profit.

Figure 2: Simulated profit bounds and optimal reserve prices.

Reserve Profit Increase over r = v0

True Optimal 1.33 0.668 6.03%

MM (ρ = 0.8, ρ = 0.8) 1.10 0.662 5.01%

MM/Both MMR (ρ = 0.0, ρ = 1.0) 0.84 0.632 0.00%

Relaxed MMR (ρ = 0.8, ρ = 0.8) 1.11 0.663 5.24%

Convex MMR (ρ = 0.7, ρ = 0.9) 1.15 0.665 5.56%

Convex MMR (ρ = 0.8, ρ = 0.8) 1.31 0.668 6.03%

Table 1: Simulated profit under suggested reserve prices.
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Category Subcategory Location Count

Art Chinese Art New York 112
Art Impressionist/20th/21st Century Art Hong Kong 636
Art Impressionist/20th/21st Century Art Las Vegas 9
Art Impressionist/20th/21st Century Art London 708
Art Impressionist/20th/21st Century Art New York 1208
Art Impressionist/20th/21st Century Art Shanghai 55
Art Old Masters London 102
Art Old Masters New York 134

Wine/jewelry/etc. – – 542

Total 3506

Table 2: The art auction dataset.

6 Application: Reserve Prices in Art Auctions

6.1 Data

The auctions are held in an open ascending format, and, on average, thirty lots are sold in

each auction. Prior to the auction, besides the basic information about each lot, the auction

houses publish a low and high estimates of the lot’s value. According to the auction houses,

these estimates may not be backed by any market or historical research, and are intended

as a crude reference for prospective bidders. The reserve price is kept secret, but is known

to be less than the lower estimate of the lot’s value. The auctioneer may bid on behalf of

the seller to ensure the reserve is met.

6.1.1 Bids and Lot Information

For each auction lot, we obtain a complete bidding trajectory by applying computer vision

techniques to frame-by-frame video data. Figure 3 presents examples of the frames. We crop

the bottom sections, highlighted in red, and use an optical character recognition package

Tesseract11 to extract the lot’s information and the bidding sequence. Then, we match the

bids for each lot with the lot’s characteristics scraped from the auction houses’ websites.

We use the Ratcliff-Obershelp strings matching algorithm12 to accommodate any errors or

misspellings in Tesseract’s output. Table 2 summarizes the auctions across art categories

and locations. Due to the nature of the data, we cannot match the bids with the bidders.

Thus, we only use the two highest bids, which arguably belong to different bidders.

11Available at https://github.com/tesseract-ocr/tesseract.
12Available in a Python package difflib command SequenceMatcher.
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6.1.2 Number of Bidders

The exact number of bidders in each auction cannot be reliably identified from the auction

videos, so we obtain bounds on it using the audio transcripts.13 In each auction, there are

four types of bidders in each auction: (i) telephone, (ii) live, (iii) absentee, and (iv) online;

see Figure 4. We obtain a lower bound on the true number of bidders by counting the

number of unique bidders or each type.

Each telephone bidder is represented by an employee of the auction house, whom the auc-

tioneer calls by their names. For example, in the top-right panel of Figure 4, the Christie’s

auctioneer references Olivier Camu, who is putting a telephone bid on behalf of an unknown

buyer. To identify the names from the transcript, we use the so-called Named Entity Recog-

nition language models. To minimize errors, we apply two state-of-the-art language models,

RoBERTa (Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, and Stoyanov, 2019)

and Contextual String Embeddings (Akbik, Blythe, and Vollgraf, 2018), and combine their

output matching similar strings and removing duplicates. To capture the identities of the

unique live, absentee, and online bidders, we look of keywords {“online bidder” = “online,”

“sir” = “gentleman,” “madam” = “lady,” “back of the room,” “to the right”, “to the left,”

“absentee”}. Our approach allows to capture all of the telephone bidders, up to one unique

online or absentee bidder, and up to five unique live bidders. The distribution of the lower

bound on the number of bidders is shown in Figure 5. Although it is unclear how tight the

resulting lower bound is, the existing statistics are reassuring: in 2021, 42% of winning bids

in Christie’s live auctions were made over the telephone and only 7% in the salesroom,14

meaning that at least some of the “missing” bidders may not have affected the auction’s

outcome anyway.

We conservatively set the upper bound on the number of bidders to two times the lower

bound. An even more conservative alternative would be the total number of bids. However,

we find that the function φN(t)
N , which is used to construct the bounds, converges point-

wise as N increases, so for N,N ′ 󰃍 10 the difference between φN(t)
N and φN ′(t)N

′
becomes

negligible. Thus, the choice between conservative upper bounds does not affect the results.

6.1.3 Auction House Fees

The auction houses charge around 25% buyer’s premium and 10% seller’s commission with

some variation depending on location and lot type. Table 8 in the Appendix summarizes the

Buyer’s Premium Schedule, for both Christie’s and Sotheby’s, as of March 2023. We adjust

13The transcripts are generated using Google Cloud Platform Speech-to-Text Recognition model. See
https://cloud.google.com/speech-to-text for the details.

14See the following article: link.
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Lot 38, Christie’s Hong Kong, Nov 2022 Lot 117, Sotheby’s New York, Nov 2022

Figure 3: Example screenshots taken from Christie’s and Sotheby’s live auctions posted on
YouTube. Red boxes highlight the relevant portions of the screen.

Room Telephone

Online Absentee

Figure 4: The four types of bidders in Sotheby’s or Christie’s live auctions.
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Figure 5: Distribution of lower bound on number of bidders across all auctions.

the bids accordingly.

6.2 Modern Art Sold in New York City

Our empirical analysis focuses on modern art sold in New York City. This is the highest

subsample in our data both in terms of the number of auctions and generated revenue. To

avoid outliers, we focus on the lots with transaction prices between $100K and $10.0M, which

leaves us with 949 observations. We further condition on the price range, [$100K, $1.0M]

or [$1.0M, $10.0M], roughly splitting the sample into one-third and two-thirds, and the

number of bidders, [2, 10] or [6, 40] (i.e., N 󰃑 5 vs N 󰃍 6), splitting each of the subsamples

approximately in half. Table 3 displays summary statistics for each of the selected price

ranges. The median and average selling price are noticeably larger than the high estimates

of the lot’s value provided by the auction houses, confirming that the estimates are imprecise.

Examining the bidding data, we find that (i) there is no evidence of jump bids towards

the end of the auctions; (ii) the difference between the two highest bids is small, relative

to the size of the bids; and (iii) the auctioneers do not enforce the minimal bid increment

guideline towards the end of the auction. Thus, the assumption that the transaction price

reveals second-highest valuation appears plausible in our dataset. Each bidder’s valuation

for a given lot consists of a common component, representing the resale value, and a private

component, representing consumption value. We assume that even after controlling for the

art category, location, price range, and the number of bidders, the common component in the

valuations is prevalent. Thus, we consider the bounding parameters ρ and ρ to values in the

range [0.75, 0.85]. Normalizing the transaction price by the lot’s high estimate, we consider

two possible choices for the value of unsold good to the seller: v0 = 2/3, corresponding to
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Transaction price ∈ [$100K, $1.0M]; Number of lots: 287

Variable Median Mean Std [Min, Max]

Transaction price/High estimate 1.39 1.83 1.29 [0.25, 6.35]

Second-highest bid 1.31 1.72 1.23 [0.24, 6.14]

Number of bids 10.00 11.42 7.40 [2.00, 39.00]

Number of bidders 5.00 5.44 2.50 [2.00, 13.00]

Low estimate/High estimate 0.67 0.69 0.05 [0.60, 0.78]

Transaction price ∈ [$1.0M, $10.0M]; Number of lots: 662

Variable Median Mean Std [Min, Max]

Transaction price/High Estimate 1.15 1.41 0.85 [0.37, 6.72]

Second-highest bid 1.11 1.34 0.82 [0.35, 6.30]

Number of bids 10.00 11.75 8.04 [2.00, 76.00]

Number of bidders 5.00 5.98 2.91 [2.00, 20.00]

Low estimate/High estimate 0.67 0.68 0.05 [0.48, 0.84]

Table 3: Summary statistics for modern art auction lots in New York City.

the average low estimate, and v0 = 5/6, corresponding the the midpoint between the low

and high estimates.

Table 4 presents the results. With v0 = 5/6 and restricted ρ, ρ, the estimated lower

bounds on expected profit under Convex MMR reserves are consistently higher than the

average realized profit, with the projected profit gains being larger for higher-priced lots with

fewer bidders. In particular, for the lots within [$1.0M, $10.0M] price range with N ∈ [2, 10]

bidders, the lower bound on the profit gain under the Convex MMR reserve with ρ = ρ = 0.8

is 15.35%, which amounts to $572K per lot, or $17.1M per auction.15 Pooling together all

lots in that price range yields a more conservative lower bound on the profit gain of 3.85%,

which amounts to $127K per lot or $3.8M per auction.16 With ρ = 0 and ρ = 1, the lower

bound on the profit under Convex MMR reserve may be substantially lower than the realized

profit. With v0 = 2/3 and restricted ρ, ρ, we find that the projected profit gains to be more

modest with lower bounds occasionally being slightly below the realized profit. However,

even in this arguably conservative scenario, the profit gains are generally expected to be

positive.

15Recall that each auction consists of 30 lots, on average.
16Table 5 in the Appendix reports the results with lower values of ρ, ρ, which result in larger expected

profit gains across the board.
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Price Range [$100K, $1.0M] [$1.0M, $10.0M]

Number of Bidders N ∈[2, 10] N ∈[6, 40] N ∈[2, 40] N ∈[2, 10] N ∈[6, 40] N ∈[2, 40]

v0 = 5/6

Avg High Estimate $541,688 $316,470 $434,965 $3,811,117 $2,741,925 $3,291,057

Avg Realized Profit 0.545 1.502 0.998 0.228 0.937 0.573

Convex MMR reserve

with ρ = 0.8, ρ = 0.8 1.20 1.36 1.25 1.12 1.05 1.20

– Bounds on profit [0.587, 0.664] [1.508, 1.530] [1.034, 1.094] [0.263, 0.337] [0.951, 0.956] [0.595, 0.666]

– 95% CI [0.458, 0.789] [1.302, 1.721] [0.911, 1.220] [0.216, 0.394] [0.865, 1.041] [0.539, 0.726]

Convex MMR reserve

with ρ = 0.75, ρ = 0.85 1.14 1.32 1.14 1.31 1.02 1.12

– Bounds on profit [0.592, 0.661] [1.509, 1.534] [1.034, 1.079] [0.224, 0.363] [0.949, 0.955] [0.598, 0.656]

– 95% CI [0.456, 0.782] [1.310, 1.727] [0.907, 1.196] [0.136, 0.454] [0.865, 1.038] [0.544, 0.706]

Convex MMR reserve

with ρ = 0.0, ρ = 1 1.73 0.84 2.02 0.84 0.85 0.84

– Bounds on profit [0.414, 0.859] [1.513, 1.514] [0.759, 1.352] [0.273, 0.277] [0.944, 0.945] [0.600, 0.602]

v0 = 2/3

Avg High Estimate $541,688 $316,470 $434,965 $3,811,117 $2,741,925 $3,291,057

Avg Realized Profit 0.711 1.669 1.165 0.394 1.104 0.739

Convex MMR reserve

with ρ = 0.8, ρ = 0.8 1.11 1.32 1.11 1.13 0.85 1.09

– Bounds on profit [0.709, 0.786] [1.661, 1.683] [1.174, 1.221] [0.328, 0.445] [1.107, 1.108] [0.722, 0.787]

– 95% CI [0.580, 0.922] [1.453, 1.872] [1.057, 1.334] [0.247, 0.511] [1.018, 1.191] [0.666, 0.854]

Convex MMR reserve

with ρ = 0.75, ρ = 0.85 1.05 1.26 1.00 1.09 0.80 1.06

– Bounds on profit [0.702, 0.777] [1.668, 1.691] [1.169, 1.206] [0.342, 0.456] [1.107, 1.107] [0.720, 0.788]

– 95% CI [0.567, 0.902] [1.470, 1.891] [1.038, 1.317] [0.273, 0.535] [1.017, 1.192] [0.661, 0.856]

Convex MMR reserve

with ρ = 0.0, ρ = 1 1.71 0.73 1.91 0.77 0.69 0.68

– Bounds on profit [0.447, 0.961] [1.674, 1.676] [0.829, 1.444] [0.393, 0.417] [1.105, 1.106] [0.745, 0.745]

Observations 151 136 287 340 322 662

Table 4: Bounds on expected profit under convex MMR reserve for Modern Art sold in New York
City. Figures are scaled by the high estimate, and v0 is set at 5/6 and 2/3.
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7 Conclusion and Further Research

This paper proposed a novel approach to partial identification in open ascending auctions.

We derived new bounds on the distribution of the highest valuation and seller’s profit,

bounding the degree of dependence between the valuations, and proposed a way to select a

reserve price under ambiguity using the Min-Max-Regret criterion. The proposed approach is

computationally simple and readily extends to settings with unknown number of bidders, as

long as bounds on the number of bidders are available. We demonstrated that the resulting

bounds are substantially tighter than those previously available in the literature, and the

proposed reserve price performs well in practice. We applied the proposed methodology to

a large new dataset of art auctions held by Christie’s and Sotheby’s and argued that higher

reserve prices would lead to a sizable increase in profit.

Our analysis can be advanced in several directions. First, one may be interested in

welfare aspects of the chosen auction format. Under the stated assumptions, bidders surplus

is also identified from the marginal distributions of the two highest valuations and can

be studied similarly to the expected profit. Second, the assumption that the transaction

price reveals the second-highest valuation in the observed data can be relaxed to weaker

bidding assumptions in the spirit of Haile and Tamer (2003). In such setting, bounds on

the distribution of the highest valuation follow directly from the arguments above, but the

analysis of optimal reserve prices becomes more nuanced: a coherent formulation of expected

profit requires additional assumptions on bidding behavior in counterfactual auctions, and

the Min-Max-Regret problems for selecting the reserve price become more complex. Finally,

an interesting direction for further research is allowing for asymmetric bidders. While our

bounding approach critically relies on the valuations being conditionally i.i.d., it appears

possible to accommodate several “types” of symmetric bidders using similar ideas.
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A Proofs

A.1 Auxiliary Lemmas

Lemma A.1 (Properties of φN(·)N). Consider a function hN : [0, 1] → [0, 1] given by:

hN(t) = φN(t)
N ,

where φN : [0, 1] → [0, 1] is defined implicitly via t = NφN(t)
N−1 − (N − 1)φN(t)

N . Then:

1. h′
N(t) =

1
N−1

· φN (t)
1−φN (t)

, so h is strictly increasing.

2. h′′
N(t) =

2
N−1

· 1

(N2 )φN (t)N−2(1−φN (t))2
, so h is strictly convex, h′′(0) = h′′(1) = ∞.

3. h′′′
N(t) =

NφN (t)−(N−2)
N(N−1)φN (t)N−1(1−φN (t))

· h′′
N(t), so h′

N(·) changes curvature exactly once.

4. f(t) = hN(t)/t satisfies limt→0 f(t) = 0 and is strictly increasing on (0, 1).

5. hN(t) is increasing in N for all t ∈ (0, 1) and N ≥ 2.

Proof. Parts 1–3 follow immediately from taking derivatives. In Part 4, the first claim follows

from the L’Hôpital’s rule. For the second claim, notice that by definition of φN(t),

h(t)

t
=

φN(t)
N

NφN(t)− (N − 1)φN(t)N
=

1
N

φN (t)
− (N − 1)

,

which is a strictly increasing function of t.

For Part 5, note that φN is well-defined for any real N 󰃍 2, so we can rely on differenti-

ation. Recall the identity:

󰀃
α(N)β(N)

󰀄′
N
= α(N)β(N)β′(N) logα(N) + α(N)β(N)−1β(N)α′(N).

Fix any t ∈ (0, 1) and suppress it from the notation for simplicity. Using the above identity:

(hN)
′ = (φN)

N log φN +N(φN)
N−1(φN)

′. (A.1)

To compute the derivative (φN)
′, recall the definition of φN :

t = N(φN)
N−1 − (N − 1)(φN)

N . (A.2)
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Differentiation both sides using the above identity and rearranging yields:

(φN)
′ =

(φN)
N − (φN)

N−1 − t log φN

N(N − 1)(φN)N−2(1− φN)
.

Plugging this in (A.1) and using (A.2), with some algebra:

󰀃
φN

󰀄′
N
=

φN

(N − 1)(1− φN)

󰀃
(φN)

N − (φN)
N−1 − (φN)

N−1 log φN

󰀄
.

The right-hand side is non-negative since log(x) 󰃑 x− 1. 󰃈

Lemma A.2 (Bounding Functions Cρ Satisfying Assumption 2.3). The functions:

1. Cρ(u) = ρu+ (1− ρ)u2

2. Cρ(u) = u2−ρ

3. Cρ(u) = P (Φ(Z1) 󰃑 u,Φ(Z2) 󰃑 u) where (Z1, Z2) are jointly normal with mean zero,

variances one, and covariance ρ;

satisfy all requirements of Assumption 2.3.

Proof. Notice that (Cρ(u))
′ 󰃍 C(u)

u
is equivalent to Cρ(u)

u
being increasing in u.

1. C0(u) = u2 and C1(u) = u is immediate. Further, Cρ(u)

u
= ρ + (1 − ρ)u, which is

increasing in u. Finally,

2
u− Cρ(u)

1− u
= 2u(1− ρ) < ρ+ 2u(1− ρ) = (Cρ(u))

′,

2. C0(u) = u2 and C1(u) = u is immediate. Further, Cρ(u)

u
= u1−ρ, which is increasing in

u. Finally, consider:

g(u) = (Cρ(u))
′ − 2

u− Cρ(u)

1− u

= (2− ρ)u1−ρ − 2
u− u2−ρ

1− u

=
u1−ρ

1− u
{2− ρ+ ρu− 2uρ} .

It is straightforward to verify that the function in the curly brackets is non-negative.
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3. As is well-known:

Cρ(u) = 2

u󰁝

0

Φ

󰀕󰁵
1− ρ

1 + ρ
Φ−1(t)

󰀖
dt.

Hence, C0(u) = u2 and C1(u) = u is immediate. Further, since the integrand in the

above display is non-negative and increasing in t,

Cρ(u) 󰃑 2Φ

󰀕󰁵
1− ρ

1 + ρ
Φ−1(u)

󰀖
u

By the Leibniz rule,

(Cρ(u))
′ = 2Φ

󰀕󰁵
1− ρ

1 + ρ
Φ−1(u)

󰀖
,

so the inequality in the preceding display states (Cρ(u))
′ 󰃍 Cρ(u)

u
. It remains to show

(Cρ(u))
′ 󰃍 2u−Cρ(u)

1−u
. Consider two cases.

(i) Suppose u 󰃑 1
2
so that Φ−1(u) 󰃑 0. Then,

(Cρ(u))
′ 󰃍 2u = 2

u− u2

1− u
󰃍 2

u− Cρ(u)

1− u
,

where the first inequality follows from
󰁴

1−ρ
1+ρ

Φ−1(u) 󰃍 Φ−1(u) and the second

from Cρ(u) 󰃍 u2.

(ii) Suppose u 󰃍 1
2
so that Φ−1(u) 󰃍 0. Then, (Cρ(u))

′ 󰃍 2Φ(0) = 1, and

Cρ(u) =

1/2󰁝

0

(Cρ(t))
′dt+

u󰁝

1/2

(Cρ(t))
′dt

󰃍
1/2󰁝

0

2tdt+

u󰁝

1/2

1dt

= u− 1

4
.

Therefore:

2
u− Cρ(u)

1− u
󰃑 1

2
· 1

1− u
󰃑 1 = (Cρ(u))

′

where the last inequality holds since u 󰃍 1
2
.

󰃈
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A.2 Proposition 1

Proof of Proposition 1. The upper bound on FN :N(v) is trivial and binds in the case of pure

common values. For the lower bound, Lemma A.1 establishes that u 󰀁→ φN(u)
N is strictly

convex. Thus:
P (VN :N 󰃑 v) = E[P (VN :N 󰃑 v |U)]

= E[P (Vi 󰃑 v |U)N ]

(a)
= E[φN(P (VN−1:N 󰃑 v |U))N ]

(b)

󰃍 φN(FN−1:N(v))
N ,

where (a) follows from the definition of φN(·), and (b) from convexity of t 󰀁→ φN(t)
N , Jensen’s

inequality, and the law of iterated expectations. 󰃈

A.3 Theorem 1

Proof of Theorem 1. In the main part of the proof, we show that the stated optimization

problems lead to pointwise sharp bounds on FN :N(v). Lemmas A.3 and A.4 show that the

bounds are monotone in FN−1:N(v) and thus are plausibly sharp in the functional sense.

For the lower bound, consider the generalized moment problem:

inf
P∈M[0,1]

󰀝
EP [φN(T )

N ]

󰀏󰀏󰀏󰀏 EP [T ] = µ, c1 󰃑 VarP (T ) 󰃑 c2

󰀞
(A.3)

where M[0, 1] denotes the set of all probability measures supported on [0, 1], µ ∈ [0, 1]

and 0 󰃑 c1 󰃑 c2 󰃑 µ(1 − µ). Denote h(t) = φN(t)
N . Lemma A.1 establishes that h(t) is

strictly increasing, strictly convex, and that h′(t) changes curvature exactly once and satisfies

h′′(0) = h′′(1) = ∞. Since h(t) is convex, the variance constraint VarP (T ) = c1 must be

binding, so the problem is:

inf
P∈M[0,1]

󰀋
EP [h(T )] |EP [T ] = µ,EP [T

2] = µ2 + c1
󰀌
. (A.4)

When c1 = 0, by Jensen’s inequality, the infimum is attained by the distribution P (T =

µ) = 1 and equals h(µ). When c1 = µ(1 − µ), the only feasible distribution on [0, 1] is the

Bernoulli distribution with P (T = 1) = µ. In this case, the infimum is equal to µ. It remains

to consider c1 ∈ (0, µ(1− µ)).

It is well known that it suffices to consider distributions P with at most three support

points (e.g., Theorem 1 in Kemperman, 1968). We first show that, due to the specific shape

of the function h(·) and its derivative, it suffices to consider distributions with two support
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points. Denote g1(t) = t, g2(t) = t2, and g(t) = (g1(t), g2(t)) all defined on T = [0, 1]. Note

that V = Conv(g(T )) = {(z1, z2) ∈ [0, 1]2 : z21 󰃑 z2 󰃑 z1}, and the point y = (µ, µ2 + c1) ∈
Int(V). Denote D∗ = {d∗ = (d0, d1, d2) ∈ R3 : d0+d1g1(t)+d2g2(t) 󰃑 h(t) for all t ∈ [0, 1]},
and, for a given d∗ ∈ D∗, let B(d∗) = {z = g(t) : d0+d1g1(t)+d2g2(t) = h(t) for some t ∈ T}.
By Theorem 5 and the following remark in Kemperman (1968), for every y ∈ Int(V ), there

exists a d∗ for which y ∈ Conv(B(d∗)). By Theorem 4 of the same paper, such y can be

expressed as y =
󰁓m

j=1 pjg(tj) for some g(tj) ∈ B(d∗), and the minimal value of the moment

problem is given by
󰁓m

j=1 pjh(tj). In the problem under consideration, B(d∗) can contain

at most two points. Suppose k(t) = d0 + d1t + d2t
2 󰃑 h(t), for all t ∈ T , with equality for

some t1 < . . . < tm. Then: (i) if t1 = 0, there can be at most one other t2 ∈ (0, 1); (ii) if

all tj ∈ (0, 1), it must be the case that the line k′(t) = d1 + 2d2t intersects the curve h′(t)

from above at each tj.
17 Indeed, case (i) follows from direct computation, and case (ii) from

a simple geometric fact that since h′(t) changes curvature only once (concave then convex)

and satisfies h′′(0) = h′′(1) = ∞, there are at most two interior intersections of d1 + 2d2t

and h′(t). Thus, the set B(d∗) contains at most two poins, so to solve (A.4), it suffices to

consider distributions P with two support points.

For some 0 󰃑 a < b 󰃑 1 and p ∈ [0, 1], consider the distribution P with P (X = a) = p

and P (X = b) = 1− p. The constraints are:

󰀻
󰀿

󰀽
ap+ b(1− p) = µ

a2p+ b2(1− p) = µ2 + c1
=⇒

󰀻
󰀿

󰀽
a(p) = µ−

󰁴
1−p
p
c1

b(p) = µ+
󰁴

p
1−p

c1,

and p must be subject to a, b ∈ [0, 1]. When p = 0 or p = 1, a = b = µ which violates the

variance constraint for c1 > 0. Thus, the problem is:

min
p∈(0,1)

󰁱
h
󰀓
µ−

󰁴
1−p
p
c1

󰀔
p+ h

󰀓
µ+

󰁴
p

1−p
c1

󰀔
(1− p)

󰁲

s.t. a(p), b(p) ∈ [0, 1]

Leting s =
󰁴

1−p
p
c1 so that p = c1

c1+s2
yields an equivalent formulation:

min
s∈[ c1

1−µ
,µ]

󰀝
h(µ− s)

c1
c1 + s2

+ h
󰀓
µ+

c1
s

󰀔 s2

c1 + s2

󰀞
.

By direct computation, the objective function is seen to be strictly convex on the feasible

17For tj ∈ (0, 1) it means that k′(t) > h′(t) immediately before tj and k′(t) < h′(t) immediately after. For
tj ∈ {0, 1} only one of the two preceding inequalities is required to hold.
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set.

Next, consider the generalized moment problem:

sup
P∈M[0,1]

󰀝
EP [h(T )]

󰀏󰀏󰀏󰀏 EP [T ] = µ, c1 󰃑 VarP (T ) 󰃑 c2

󰀞
,

or, equivalently,

− inf
P∈M[0,1]

󰀝
EP [−h(T )]

󰀏󰀏󰀏󰀏 EP [T ] = µ, c1 󰃑 VarP (T ) 󰃑 c2

󰀞
.

Since f(t) = −h(t) is concave, the variance constraint VarP (T ) = c2 must be binding, so

the problem is:

− inf
P∈M[0,1]

󰀋
EP [f(T )] |EP [T ] = µ,EP [T

2] = µ2 + c2
󰀌
, (A.5)

with µ ∈ [0, 1] and c2 ∈ [0, µ(1−µ)]. When c2 = 0, by the Edmundson-Mandansky inequality,

the infimum is attained by the distribution P (T = µ) = 1 and equals f(µ). When c2 = µ(1−
µ), the only feasible distribution on [0, 1] is the Bernoulli distribution with P (T = 1) = µ.

In this case, the infimum is equal to µ. It remains to consider c2 ∈ (0, µ(1− µ)).

Using the idea and notation from the first part of the proof, suppose k(t) = d0 + d1t +

d2t
2 󰃑 f(t) for all t ∈ T with equality for some t1 < . . . < tm. Then: at each tj ∈ (0, 1), the

line k′(t) must intersect f ′(t) from above; if t1 = 0, it must be k′(0) 󰃑 f ′(0); and if tm = 1,

it must be that k′(1) 󰃍 f ′(1). The function f ′(t) changes curvature exactly once (convex

then concave) and satisfies f ′(0) = 0 and f ′(1) = −∞. Thus, there can be at most one

interior tj satisfying the requirement above. By Theorem 4 of Kemperman (1968), it suffices

to consider distributions with tree support points: 0, 1, and t ∈ (0, 1). Letting P (T = t) = q,

P (T = 1) = p, and P (T = 0) = 1− p− q, the constraints in (A.5) become:

󰀻
󰀿

󰀽
p+ qt = µ

p+ qt2 = µ2 + c2
=⇒

󰀻
󰀿

󰀽
q(t) = µ(1−µ)−c2

t(1−t)

p(t) = µ− q(t) · t
,

subject to q(t), p(t) 󰃍 0 and q(t)+ p(t) 󰃑 1. Plugging this into (A.5) and rearranging yields:

max
t∈[µ− c2

1−µ
,µ+

c2
µ ]

󰀝
µ− µ(1− µ)− c2

t(1− t)
(t− h(t))

󰀞
.

󰃈
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A.3.1 Properties of Bounds in Theorem 1

Lemma A.3 (Properties of the Lower Bound in Theorem 1). Consider the function:

f(µ) = min
s∈[ c1

1−µ
,µ]

󰀝
φN(µ− s)N

c1
c1 + s2

+ φN

󰀓
µ+

c1
s

󰀔N s2

c1 + s2

󰀞

with c1 = Cρ(µ, µ) − µ2 with Cρ satisfying the requirements in Assumption 2.3. Then,

µ 󰀁→ f(µ) is non-decreasing.

Proof. We suppress the dependence of c1 on µ to simplify the notation. Denoting the objec-

tive function in the optimization problem by r(s;µ, c1),

∂r(s;µ, c1)

∂s
=

2c1s

(c1 + s2)

󰁱
h
󰀓
µ+

c1
s

󰀔
− h(µ− s)

󰁲
− c1

c1 + s2

󰁱
h′(µ− s) + h′

󰀓
µ+

c1
s

󰀔󰁲
.

First, note that as s → c1
1−µ

, we have µ− c1/s → 1 and thus h′(µ− c1/s) → +∞, by Lemma

A.1. Since all other terms in the above expression stay finite, r′(s;µ, c1) → −∞. Thus, the

constraint s 󰃍 c1/(1 − µ) never binds, and it suffices to consider two cases: (i) s = µ and

(ii) s ∈ (c1/(1− µ), µ). In case (i), the lower bound is given by:

f(µ) =
µ2

c1 + µ2
h

󰀕
µ+

c1
µ

󰀖
= µ

h(Cρ(µ,µ)

µ
)

Cρ(µ,µ)

µ

.

The function u 󰀁→ h(u)/u is increasing, by Lemma A.1, and Cρ(µ, µ)/µ is increasing by

Assumption 2.3, so f(µ) is increasing. For case (ii), by the Envelope Theorem:

f ′(µ) =
∂r(s, µ, c1)

∂µ

󰀏󰀏󰀏󰀏
s=s∗(µ)

+
∂r(s;µ, c1)

∂c1

󰀏󰀏󰀏󰀏
s=s∗(µ)

· ∂c1
∂µ

,

where s∗(µ) solves the first order condition ∂r(s;µ,c1)
∂s

= 0,

∂r(s, µ, c1)

∂µ
=

c1
c1 + s2

h′(µ− s) +
s2

c1 + s2
h′
󰀓
µ+

c1
s

󰀔
,

and

∂r(s;µ, c1)

∂c1
=

s2

(c1 + s2)2

󰁱
h(µ− s)− h

󰀓
µ+

c1
s

󰀔󰁲
+

s

c1 + s2
h′
󰀓
µ+

c1
s

󰀔
. (A.6)
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Thus, the condition f ′(µ) 󰃍 0 is equivalent to:

∂c1(µ)

∂µ
󰃍 −

∂r(s,µ,c1)
∂µ

∂r(s;µ,c1)
∂c1

󰀏󰀏󰀏󰀏󰀏
s=s∗(µ)

(A.7)

From the first order condition, at s = s∗(µ),

h
󰀓
µ+

c1
s

󰀔
− h(µ− s) =

c1 + s2

2

󰁱
h′(µ− s) + h′(µ+

c1
s
)
󰁲
.

Plugging the above in (A.6) and the result in (A.7), and applying the Mean Value Theorem

yields:

−
∂r(s,µ,c1)

∂µ

∂r(s;µ,c1)
∂c1

󰀏󰀏󰀏󰀏󰀏
s=s∗(µ)

= −2
h′(µ− s) + s2

c1+s2
{h′(µ+ c1

s
)− h′(µ− s)}

s
c1+s2

{h′(µ+ c1
s
)− h′(µ− s)}

󰀏󰀏󰀏󰀏󰀏
s=s∗(µ)

= −2
h′(µ− s) + sh′′(µ̃)

h′′(µ̃)

󰀏󰀏󰀏󰀏
s=s∗(µ)

= −2(s∗(µ) + h′(µ−s∗(µ))
h′′(µ̃) ),

for some µ̃ ∈ [µ − s∗(µ), µ + c1
s∗(µ) ]. Since both h′(·) and h′′(·) are positive, and s∗(µ) 󰃍

c1/(1− µ) a sufficient condition for the lower bound to increase in µ is:

∂c1(µ)

∂µ
󰃍 −2

c1(µ)

1− µ
.

Plugging in the expression for c1(µ) and simplifying yields:

(Cρ(µ, µ))
′ 󰃍 2 · µ− Cρ(µ, µ)

1− µ
.

󰃈

Lemma A.4 (Properties of the Upper Bound in Theorem 1). Consider the function:

f(µ) = max
s∈[µ− c2

1−µ
,µ+

c2
µ ]

󰀝
µ− µ(1− µ)− c2

s(1− s)
(s− h(s))

󰀞
.

where h(s) = φN(s)
N and c2 = Cρ(µ, µ)−µ2 with Cρ satisfying the requirements in Assump-

tion 2.3. Then, µ 󰀁→ f(µ) is non-decreasing.
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Proof. Let s∗(µ) denote the argmax. There are three possible cases.

(i) s∗(µ) = µ − c2
1−µ

= µ−Cρ(µ,µ)

1−µ
. Plugging this in the objective function and simplifying

yields:

f(µ) =
Cρ(µ, µ)− µ2

Cρ(µ, µ)− µ2 + (1− µ)2
󰁿 󰁾󰁽 󰂀

α(µ)

·1 + (1− µ)2

Cρ(µ, µ)− µ2 + (1− µ)2
󰁿 󰁾󰁽 󰂀

1−α(µ)

h(s∗(µ)).

Since h(s∗(µ)) 󰃑 1, for all µ, it suffices to show that α(µ) is increasing. In turn, this

is equivalent to

β(µ) =
(1− µ)2

Cρ(µ, µ)− µ2

being decreasing. By direct calculation, β′(µ) 󰃑 0 is equivalent to:

(Cρ(µ, µ))
′ 󰃍 2

µ− Cρ(µ, µ)

1− µ
,

which is one of the conditions in Assumption 2.3.

(ii) s∗(µ) is interior. Denoting the objective function in the optimization problem by

r(s;µ, c2), by the Envelope Theorem:

f ′(µ) =
∂r(s, µ, c2)

∂µ

󰀏󰀏󰀏󰀏
s=s∗(µ)

+
∂r(s;µ, c2)

∂c2

󰀏󰀏󰀏󰀏
s=s∗(µ)

· ∂(Cρ(µ, µ)− µ2)

∂µ

= 1− (1− 2µ)
s∗ − h(s∗)

s∗ − s∗2
+

s∗ − h(s∗)

s∗ − s∗2
·
󰀕
∂Cρ(µ, µ)

∂µ
− 2µ

󰀖

= 1 + t(s∗)

󰀕
∂Cρ(µ, µ)

∂µ
− 1

󰀖
,

where t(s∗) ≡ s∗−h(s∗)
s∗−s∗2

. Notice the solution s∗ does not depend on µ and corresponds

to the minimum of the function t(s). Since ∂Cρ(µ,µ)

∂µ
󰃍 0, to conclude that f ′(µ) 󰃍 0

it suffices to show that t(s∗) ∈ [0, 1]. Since h(s) 󰃑 s, we have that t(s) 󰃍 0 for all s.

Writing t(s) = 1 + s2−h(s)
s−s2

󰃑 1, it suffices to show s2 − h(s) 󰃑 0 for some s. By the

Taylor expansion, h(s) = h′′(s̃)
2

s2, for some s̃ ∈ (0, s), and, by Lemma A.1, h′′(s̃) → +∞
as s̃ → 0. Thus, for s close to zero, s2 − h(s) < 0, and the result follows.
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(iii) s∗(µ) = µ+ c2
µ
= Cρ(µ,µ)

µ
. Plugging this in the objective function and simplifying yields:

f(µ) = µ
h
󰀓

C(µ,µ)
µ

󰀔

󰀓
C(µ,µ)

µ

󰀔 .

Since µ 󰀁→ C(µ,µ)
µ

is increasing, by Assumption 2.3, and t 󰀁→ h(t)
t

is increasing, by

Lemma A.1, it follows that f(µ) is increasing.

󰃈

A.4 Theorem 3

Proof of Theorem 3. Starting with Equation (6) and treating the lower and the upper bounds

separately, the proof proceeds exactly like that of Theorem 1.

󰃈

A.5 Min-Max-Regret Theorems 5 and 6

The following auxiliary lemma establishes that, given a vector of order statistics, it is without

loss of generality to assume that the underlying distribution is exchangeable.

Lemma A.5 (Symmetrization). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with

an arbitrary joint distribution. Let X1:n = (X1:n, . . . , Xn:n) denote the vector of order

statistics, where Xj:n is the j-th smallest of (X1, . . . , Xn). There exists a random vector

Y = (Y1, . . . , Yn) ∈ Rn such that: (1) Y is exchangeable; and (2) Y 1:n = X1:n almost surely.

Proof. Let Π denote the set of all permutations p : {1, . . . , n} → {1, . . . , n}, and π be drawn

uniformly in Π, i.e., P (π = p) = 1/n! for all p ∈ Π. Define (Yj)
n
j=1 = (Xπ(j))

n
j=1. Then:

P (Y1 󰃑 y1, . . . , Yn 󰃑 yn) =
1

n!

󰁛

p∈Π

P (Xp(1) 󰃑 y1, . . . , Xp(n) 󰃑 yn).

The summation in the right hand side includes all possible events of the form {Xj1 󰃑
y1, . . . , Xjn 󰃑 yn}, so an arbitrary permutation of {y1, . . . , yn} changes the order of summands

but not the value of the sum in the above display. Therefore, for any permutation p,

P (Y1 󰃑 yp(1), . . . , Yn 󰃑 yp(n)) = P (Y1 󰃑 y1, . . . , Yn 󰃑 yn).

Since rearranging the elements of X does not affect the order statistics, we have Y 1:n = X1:n

for all realizations of π, so that P (Y 1:n = X1:n) = 1. 󰃈
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A.5.1 Theorem 5

Proof of Theorem 5. Let F denote FN−1:N and F ∗ denote FN :N , for simplicity. Let π(r;F ∗)

denote the expected profit function in (1), and F the set of all admissible F ∗. Fix some

reserve r 󰃍 v0 and consider an alternative r̃ 󰃍 v0. Denote D(r̃,r;F ∗) = π(r̃;F ∗)− π(r;F ∗),

which is

D(r̃, r;F ∗) =

󰁝 r

r̃

(1− F (v))dv + r̃ − r + {F ∗(r)(r − v0)− F ∗(r̃)(r̃ − v0)}.

The maximum regret is given by R(r) = max{R1(r), R2(r)}, where

R1(r) = sup
F1

sup
r̃<r

D(r̃,r;F ∗).

R2(r) = sup
F1

sup
r̃>r

D(r̃,r;F ∗).

Considering D(r̃, r;F ∗), the supremum R1(r) is attained by (i) maximizing F ∗(r); and (ii)

minimizing F ∗(r̃) for all r̃ < r. Evidently, both conditions are satisfied by the CDF F ∗
1,r(·) in

the statement of the theorem. Similarly, the supremum R2(r) is attained by: (i) maximizing

F ∗(r); and (ii) minimizing F ∗(r̃) for all r̃ > r. Condition (i) is achieved by setting F ∗(r) =

F (r). Since F ∗ must be non-decreasing, condition (ii) is achieved by setting F ∗(v) = F (r)

for all v ∈ [r, F−1(F (r))] and to F ∗(v) = F (v) afterwards. Both of these conditions are

satisfied by the CDF F ∗
2,r(·) in the statement of the theorem. Hence, the result follows. 󰃈

A.5.2 Theorem 6

Proof of Theorem 6. The argument is essentially the same as in Theorem 5. The supremum

R1(r) is attained by (i) maximizing F1(r); and (ii) minimizing F1(r̃) for all r̃ < r. Since it

must be that F1(v) = g1(F2(v)) for a convex function g1, conditions (i) and (ii) can only

be attained by defining g1 as in the statement of the Theorem. The middle part of g1 is

restricted to be linear precisely to preserve convexity while minimizing F1(r̃) for all r 󰃑 r̃.

A similar argument applies for the supremum R2(r) and g2. 󰃈

Finally, we show the following auxiliary result. Its’ proof additionally shows that VN−1:N

in the statement of Assumption 3.2 can be replaced with VN−1:N−1.

Lemma A.6 (CDFs of Order Statistics under Monotone Likelihood Ratio). Let Assumptions

3.2 (i) and (iv) hold. Then,

FN :N = gN(FN−1:N)

for some increasing convex function gN : [0, 1] → [0, 1].
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Proof. By exchangeability,

FN−1:N(v) = N · FN−1:N−1(v)− (N − 1) · FN :N(v)

= N · CN−1(F (v))− (N − 1) · CN(F (v)),

and

FN :N(v) = CN(F (v)),

where CJ : [0, 1] → [0, 1] is defined as CJ(u) = C̃J(u, . . . , u) where C̃J is the copula function

of (V1, . . . , VJ), for J ∈ {N − 1, N}. Denote f(u) = NCN−1(u) − (N − 1)CN(u) and notice

this function is strictly increasing. It follows that:

FN :N(v) = CN(f
−1(FN−1:N(v))) ≡ g(FN−1:N(v)).

By direct calculation:

g′′(u) =
C ′′

N(su)f
′(su)− C ′

N(su)f
′′(su)

f ′(su)2
,

where su = f−1(u). Plugging in the expressions for f ′(su) and f ′′(su) and simplifying yields

that g′′(u) 󰃍 0 for all u ∈ [0, 1] holds if and only if:

C ′′
N(s)

C ′
N(s)

󰃍 C ′′
N−1(s)

C ′
N−1(s)

,

for all s ∈ [0, 1]. Denoting cJ(s) = C ′
J(s) for J ∈ {N − 1, N}, the above is equivalent to:

∂

∂s

󰀕
cN(s)

cN−1(s)

󰀖
󰃍 0.

Since cN(v) = fVN :N
(v) and fVN−1:N

(v) = NcN−1(v)− (N − 1)fVN :N
(v), it follows that:

fVN−1:N
(v)

fVN :N
(v)

= N
cN−1(v)

cN(v)
− (N − 1),

so the ratio
fVN :N

(v)

fVN−1:N
(v)

is increasing if and only if cN (s)
cN−1(s)

is, which concludes the proof.

󰃈
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B Estimation

To simplify notation, we denote F (v) = FN−1:N(v) throughout. The exposition below as-

sumes that N is known and fixed and X = ∅. To account for varying N and discrete X, it

suffices to modify the estimator F̂ and its asymptotic distribution.

B.1 Profit Bounds

Let F̂ (v) = 1
n

󰁓n
i=1 1(Pi 󰃑 v) denote the sample analog estimator for F . Its’ pointwise

asymptotic distribution is

√
n(F̂ (v)− F (v)) →d N(0, VF (v)),

where VF (v) = F (v)(1− F (v). The profit bounds from Theorem 2 are estimated as

π̂(r) =
1

n

n󰁛

i=1

max(r, Pi)− v0 − (r − v0)ψ(F̂ (r))

π̂(r) =
1

n

n󰁛

i=1

max(r, Pi)− v0 − (r − v0)ψ(F̂ (r)).

(B.1)

Using delta-method, the asymptotic distributions are

√
n(π̂(r)− π(r)) →d N(0, Vπ(r));

√
n(π̂(r)− π(r)) →d N(0, Vπ(r)),

where

Vπ(r) = Var(max(r, P )) + (r − v0)
2ψ(F (r))2VF (r)− 2(r − v0)ψ

′
(F (r))(r − E[max(r, P )])F (r);

Vπ(r) = Var(max(r, P )) + (r − v0)
2ψ(F (r))2VF (r)− 2(r − v0)ψ

′(F (r))(r − E[max(r, P )])F (r).

Under standard regularity conditions, the plug-in variance estimators V̂π(r) and V̂π(r) are

consistent.

B.2 MMR Reserve Price

Let r̂ be defined in Equation (13). Suppose (i) The set of relevant reserve prices is R = [r, r];

(ii) F̂N−1:N is consistent for FN−1:N uniformly overR; (ii) the MMR solution r∗ ∈ R is unique.

Then, by the standard arguments, r̂ is consistent for r. To obtain the limiting distribution,

suppose, for concreteness, that F̂N−1:N is
√
n-consistent for FN−1:N . By the mean-value
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theorem,

∆̂(r̂)− ∆̂(r∗) = ∆̂′(r̃)(r̂ − r∗)

for some r̃ between r̂ and r∗. Suppose that: (i)
√
n∆̂(r̂) = oP (1); (ii)

√
n∆̂(r∗) →d N(0, V∆);

(iii) supr∈R |∆̂′(r)−∆′(r)| = oP (1); and (iv)∆′(r∗) > 0. Condition (i) allows for approximate

solution ∆̂(r̂) ≈ 0; Condition (ii) can be established using functional delta-method, viewing

∆ as a functional of F , although the expression for V∆ is cumbersome; Condition (iii) follows

from continuity of F 󰀁→ ∆′(r;F ) with respect to the sup norms; and Condition (iv) ensures

that the first-order mean-value expansion of ∆̂(·) is non-degenerate. By Slutsky’s theorem,

√
n(r̂ − r∗) →d N

󰀕
0,

V∆

∆′(r∗)2

󰀖
. (B.2)

B.3 Expected Profit Under MMR Optimal Reserve Price

Consider the expansion from equation (16):

√
n(π̂∗ − π∗) = {

√
n(π̂(r̂)− π(r̂))−

√
n(π̂(r∗)− π(r∗))} (I)

+
√
n(π̂(r∗)− π(r∗)) (II)

+
√
n(π(r̂)− π(r∗)). (III)

(B.3)

Term (I) can be written as

(I) =
1√
n

n󰁛

i=1

{max(r̂, Pi)− EP [max(r̂, P )]}− 1√
n

n󰁛

i=1

{max(r∗, Pi)− EP [max(r∗, P )]} (A)

+
√
n
󰀓
{ψ(F̂ (r̂))− ψ(F (r̂))}− {ψ(F̂ (r∗))− ψ(F (r∗))}

󰀔
, (B)

where EP [ · ] denotes the expectation with respect to P only. Term (A) takes the form

(A) = Gn(f̂ − f)

where Gn(h) =
1√
n

󰁓n
i=1 h(Pi) − E[h(P )] denotes the empirical process, f(P ) = max(r, P ),

and f̂(P ) = max(r̂, P ). Notice F = {f(P ) = max(r, P ) : r ∈ R} is a VC class of functions

with a square-integrable envelope E[max(r̄, P )2] < ∞. Thus, F is Donsker, so in particular,

Gn(·) is asymptotically equicontinuous, i.e., for every ε, η > 0 there is a δ > 0 such that

lim sup
n→∞

P

󰀣
sup

ρ(f,g)<δ

|Gn(f − g)| > ε

󰀤
< η
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where ρ(f, g) = E[(f(P ) − g(P ))2]1/2. Since ρ(f̂n, f) →p 0, the above immediately implies

(A) = oP (1). This result can also be shown directly using symmetrization lemma and a

suitable maximal inequality. Further, by the mean-value theorem:

(B) =
√
n{ψ′(F̃ )(F̂ (r̂)− F (r̂))− ψ′(F̄ )(F̂ (r∗)− F (r∗))}

= ψ′(F̃ ) ·
√
n({F̂ (r̂)− F (r̂)}− {F̂ (r∗)− F (r∗)}) (B′)

+ (ψ(F̃ )− ψ(F̄ )) ·
√
n{F̂ (r∗)− F (r∗)} (B′′)

for some F̃ between F̂ (r̂) and F (r̂) and F̄ between F̂ (r∗) and F (r∗). Note that

(B′) = G(ĝ − g),

where g(P ) = 1(P 󰃑 r) and ĝ(P ) = 1(P 󰃑 r̂), so using the same arguments as for (A),

it follows that (B.1) = oP (1). Finally, since each of F̂ (r̂), F (r̂), and F̂ (r∗) converges in

probability to F (r∗), we have

(B′′) = oP (1) ·
√
n(F̂ (r∗)− F (r∗)) = oP (1).

It follows that (I) = oP (1). By the mean-value theorem and Slutsky’s theorem,

√
n(π̂∗ − π∗) =

√
n(π̂(r∗)− π(r∗)) + π′(r∗)

√
n(r̂ − r∗) + oP (1),

so the limiting distribution of
√
n(π̂∗ − π∗) is Gaussian.

The asymptotic variance takes a very complicated form due to the dependence between

the summands in the above display, so we propose a non-parametric bootstrap procedure

in Algorithm 1. The validity of this procedure follows from repeating the above arguments

conditionally on the data and applying the Lindeberg-Feller’s CLT.
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C Tables

C.1 Additional Results

Price Range [$100K, $1.0M] [$1.0M, $10.0M]

Number of Bidders N ∈[2, 10] N ∈[6, 40] N ∈[2, 40] N ∈[2, 10] N ∈[6, 40] N ∈[2, 40]

v0 = 5/6

Avg High Estimate $541,688 $316,470 $434,965 $3,811,117 $2,741,925 $3,291,057

Avg Realized Profit 0.545 1.502 0.998 0.228 0.937 0.573

Minimax regret reserve

with ρ = 0.5, ρ = 0.6 1.32 1.55 1.42 1.37 1.27 1.32

– Bounds on profit [0.592, 0.715] [1.502, 1.548] [1.039, 1.148] [0.227, 0.390] [0.955, 0.977] [0.603, 0.716]

– 95% CI [0.458, 0.844] [1.303, 1.746] [0.914, 1.269] [0.142, 0.473] [0.883, 1.058] [0.553, 0.767]

Minimax regret reserve

with ρ = 0.6, ρ = 0.7 1.26 1.44 1.35 1.33 1.20 1.27

– Bounds on profit [0.584, 0.691] [1.493, 1.532] [1.036, 1.128] [0.224, 0.379] [0.950, 0.968] [0.595, 0.696]

– 95% CI [0.455, 0.816] [1.287, 1.724] [0.919, 1.250] [0.141, 0.458] [0.871, 1.051] [0.544, 0.750]

Minimax regret reserve

with ρ = 0.7, ρ = 0.8 1.21 1.36 1.25 1.32 1.05 1.20

– Bounds on profit [0.580, 0.673] [1.508, 1.536] [1.035, 1.102] [0.224, 0.374] [0.951, 0.958] [0.595, 0.675]

– 95% CI [0.442, 0.793] [1.313, 1.728] [0.910, 1.222] [0.140, 0.465] [0.867, 1.039] [0.542, 0.734]

v0 = 2/3

Avg High Estimate $541,688 $316,470 $434,965 $3,811,117 $2,741,925 $3,291,057

Avg Realized Profit 0.711 1.669 1.165 0.394 1.104 0.739

Minimax regret reserve

with ρ = 0.5, ρ = 0.6 1.26 1.51 1.36 1.15 1.05 1.24

– Bounds on profit [0.699, 0.834] [1.644, 1.691] [1.168, 1.282] [0.338, 0.474] [1.114, 1.119] [0.718, 0.835]

– 95% CI [0.557, 0.968] [1.439, 1.894] [1.041, 1.400] [0.269, 0.539] [1.035, 1.202] [0.667, 0.891]

Minimax regret reserve

with ρ = 0.6, ρ = 0.7 1.21 1.40 1.27 1.14 1.01 1.18

– Bounds on profit [0.692, 0.814] [1.648, 1.685] [1.159, 1.255] [0.335, 0.468] [1.111, 1.115] [0.715, 0.816]

– 95% CI [0.546, 0.941] [1.443, 1.874] [1.025, 1.364] [0.267, 0.535] [1.025, 1.201] [0.658, 0.876]

Minimax regret reserve

with ρ = 0.7, ρ = 0.8 1.16 1.32 1.18 1.12 0.85 1.10

– Bounds on profit [0.694, 0.801] [1.661, 1.690] [1.164, 1.237] [0.336, 0.462] [1.107, 1.109] [0.720, 0.798]

– 95% CI [0.546, 0.947] [1.467, 1.891] [1.036, 1.361] [0.267, 0.538] [1.021, 1.193] [0.664, 0.858]

Observations 151 136 287 340 322 662

Table 5: Bounds on expected profit for Modern Art sold in New York City. Figures are scaled by
the high estimate, and v0 is set at 5/6 and 2/3.
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C.2 Data Sources

Auction Title URL

Impressionist and Modern Art Evening Sale — New York link

20th/21st Century Art Evening Sales — Hong Kong link

20th Century Evening Sale — New York link

The Collection of Thomas and Doris Ammann Evening Sale — New York link

The Collection of Anne H. Bass and 20th Century Evening Sale — New York link

20th/21st Century: London Evening Sale followed by The Art of the Surreal Evening Sale link

21st Century Evening Sale — New York link

A Century of Art: The Gerald Fineberg Collection Part I — New York link

Post-Millennium Evening Sale — Hong Kong link

20th/21st Century Art Evening Sales — London link

Rare Watches Including the Property of Michael Schumacher — Geneva link

Magnificent Jewels — Geneva link

20th/21st Century Evening Sales — Hong Kong link

20th/21st Century: London to Paris — Christies link

21st Century Evening Sale — New York link

20th/21st Century Art Auctions — Christie’s Hong Kong link

20th/21st Century: Evening Sale Including Thinking Italian, London — Christies link

The Cox Collection and 20th Century Evening Sale — New York link

20th/21st Century: Shanghai to London link

The Collection of Thomas and Doris Ammann Evening Sale — New York link

20th/21st Century Art Evening Sales — Hong Kong link

20th/21st Century: London to Paris Evening Sales link

20th/21st Century: London link

The Ann & Gordon Getty Evening Sale — New York link

Table 6: Christie’s YouTube Data Sources
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https://youtube.com/watch?v=6gnX3Oyr3rM
https://youtube.com/watch?v=VPFnD6O0epE
https://youtube.com/watch?v=3ClOsh4Ry34
https://youtube.com/watch?v=_eY3eTn0R-c
https://youtube.com/watch?v=COWCWO8993g
https://youtube.com/watch?v=GBp3N3mHBzU
https://youtube.com/watch?v=q_XEMZc--TI
https://youtube.com/watch?v=QMZGAYS2gj8
https://youtube.com/watch?v=UKFGxJz4WmI
https://youtube.com/watch?v=g0OxqR4pz8U
https://youtube.com/watch?v=UUMJnBbJcJM
https://youtube.com/watch?v=YCjidYbaQ3g
https://youtube.com/watch?v=9gmxMua9FP8
https://youtube.com/watch?v=NZXCfj5WqIk
https://youtube.com/watch?v=fje6NxwNht4
https://youtube.com/watch?v=CBmFk-LXCaM
https://youtube.com/watch?v=pqbU4cit5to
https://youtube.com/watch?v=BpkbPBEQb2c
https://youtube.com/watch?v=p7UKUUWbZ7Y
https://youtube.com/watch?v=_eY3eTn0R-c
https://youtube.com/watch?v=IEVT8oYrgfM
https://youtube.com/watch?v=Ylqf_arQ49k
https://youtube.com/watch?v=drm16gIfReQ
https://youtube.com/watch?v=93VRp_yb46s


Auction Title URL

Hong Kong Contemporary Art Evening Sale (LIVE) link

LIVE from New York — Modern Evening Auction link

LIVE from New York — The Now and Contemporary Evening Auctions link

LIVE from Hong Kong — The Now and Modern & Contemporary Evening Auctions link

LIVE from London — Modern & Contemporary Evening Auction featuring The Now link

LIVE from New York — The Now and Contemporary Evening Auctions link

LIVE from New York — The Modern Evening Auction link

LIVE from New York — The Emily Fisher Landau Collection: An Era Defined Evening Auction link

LIVE from London — The Now & Contemporary Evening Auctions link

LIVE from Hong Kong — The Autumn Sales link

LIVE from London — Freddie Mercury: A World of His Own Evening Sale link

LIVE from London — Old Master & 19th Century Paintings Evening Auction link

LIVE — The Now & Modern and Contemporary Auctions, ft. Face to Face: A Celebration of Portraiture link

The Mo Ostin Collection Evening Auction & The Modern Evening Auction link

LIVE from New York — The Now & Contemporary Evening Auctions link

LIVE from London — The Now and Modern & Contemporary Evening Auctions link

LIVE from New York — The Masters Week Auctions link

LIVE from New York — Master Paintings & Sculpture Part I link

LIVE from New York — The David M. Solinger Collection & Modern Evening Auctions link

LIVE from Paris — Modernits link

LIVE from London — The Now & Contemporary Evening Auctions link

LIVE from Paris — Htel Lambert, The Illustrious Collection, Volume I: Chefs-d’oeuvre link

LIVE from Hong Kong — Modern, Williamson Pink Star & Contemporary Auctions link

LIVE from London — Old Masters Evening Auction link

LIVE from London — The Jubilee Auction and Modern & Contemporary Evening Auction link

LIVE from New York — The Now & Contemporary Evening Auctions link

LIVE from New York — Modern Evening Auction link

LIVE from New York — The Macklowe Collection link

LIVE from New York — Important Watches link

LIVE from London — Old Masters Evening Sale link

LIVE From New York — PROUV x BASQUIAT: The Collection of Peter M. Brant and Stephanie Seymour link

LIVE from New York — Magnificent Jewels link

LIVE from London — Treasures link

LIVE from Monaco — KARL, Karl Lagerfelds Estate Part I link
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https://youtube.com/watch?v=AzLKUysIBcw
https://youtube.com/watch?v=oVCDT8gVC1c
https://youtube.com/watch?v=4ydUj3vcdiI
https://youtube.com/watch?v=DsUOK63mrHo
https://youtube.com/watch?v=UibJCHTg758
https://youtube.com/watch?v=8s0hOuylgsE
https://youtube.com/watch?v=W6lB1goeW7I
https://youtube.com/watch?v=7cAYpIxMEb8
https://youtube.com/watch?v=8XGa5Euvwco
https://youtube.com/watch?v=2zaTdRWmBAA
https://youtube.com/watch?v=818l7c8TnpA
https://youtube.com/watch?v=QRZNiUMBAUM
https://youtube.com/watch?v=4xA6xYiTfSo
https://youtube.com/watch?v=N_aq4OUHan8
https://youtube.com/watch?v=Yo51zLfhpQ0
https://youtube.com/watch?v=ssXTLEnki-0
https://youtube.com/watch?v=WH9Jltj0TFI
https://youtube.com/watch?v=6Eib2ATflk8
https://youtube.com/watch?v=aPczPCkBEhU
https://youtube.com/watch?v=dCmRpdNUUO8
https://youtube.com/watch?v=08itPVCVS7A
https://youtube.com/watch?v=M9g6bh02mrQ
https://youtube.com/watch?v=tP8WydkkaMM
https://youtube.com/watch?v=U05hBP1U_Bw
https://youtube.com/watch?v=pXzQVSKJW8E
https://youtube.com/watch?v=u4i0tzxuCTc
https://youtube.com/watch?v=bNnCT5JHY_s
https://youtube.com/watch?v=TM-Jhb9wmIY
https://youtube.com/watch?v=1KI1diE74Ss
https://youtube.com/watch?v=BhLplCkLabk
https://youtube.com/watch?v=K8JIVTbSfuA
https://youtube.com/watch?v=dWNJwbilAmY
https://youtube.com/watch?v=TsZpok8_vxY
https://youtube.com/watch?v=0X2-d2pRy3k


LIVE from Edinburgh — The Distillers One of One Whisky Auction link

LIVE from Paris — Art Contemporain Evening Sale link

LIVE from Sotheby’s New York — The Now & Contemporary Evening Auctions With U.S. Constitution Sale link

LIVE from Sotheby’s New York — Modern Evening Auction link

LIVE from Sotheby’s New York — The Macklowe Collection link

LIVE from Paris — Past/Forward and Modernits link

LIVE from Las Vegas: Icons of Excellence & Haute Luxury link

LIVE from Las Vegas — Picasso: Masterworks from the MGM Resorts Fine Art Collection link

LIVE from New York — Collector, Dealer, Connoisseur: The Vision of Richard L. Feigen link

LIVE From Sothebys London — Richter, Banksy and Twombley lead the Contemporary Art Evening Auction link

LIVE From Sothebys Hong Kong — Modern and Contemporary Art Evening Sales link

LIVE from London — Old Masters Evening Sale link

LIVE from London: British Art + Modern & Contemporary Auctions link

LIVE from Hong Kong: Jay Chou x Sothebys — Evening Sale link

LIVE From Sothebys New York — Important Watches link

LIVE from Sothebys New York — Magnificent Jewels link

LIVE from Sothebys Paris — Important Design: from Noguchi to Lalanne link

LIVE from Sothebys New York — Monet, Warhol and Basquiat Lead Marquee Evening Sales link

LIVE From Sothebys Hong Kong — Contemporary Art Evening Sale link

LIVE From Sothebys Hong Kong — Icons and Beyond Legends: Modern Art Evening Sale link

LIVE from Sotheby’s Impressionist & Modern Art + Modern Renaissance Auctions link

LIVE from Sotheby’s Sales of Important Chinese Art and Chinese Art from the Brooklyn Museum link

LIVE from Sotheby’s: The Collection of Hester Diamond Auction in New York link

LIVE from Sotheby’s Master Paintings & Sculpture Auction in New York link

LIVE from Sotheby’s London Old Masters Evening Sale link

LIVE from Sotheby’s marquee Evening Sales of Contemporary and Impressionist & Modern Art link

Table 7: Sotheby’s YouTube Data Sources
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https://youtube.com/watch?v=Oz6OVq9gM7Q
https://youtube.com/watch?v=PynPa-fa78k
https://youtube.com/watch?v=1TBa-9Lx3vc
https://youtube.com/watch?v=zDzAgP19YF0
https://youtube.com/watch?v=fAqoHk3eDXA
https://youtube.com/watch?v=phuaNjPpglw
https://youtube.com/watch?v=V6_S5CYQy5o
https://youtube.com/watch?v=XgLMdJhVjKk
https://youtube.com/watch?v=XUWOc5nXTGQ
https://youtube.com/watch?v=LKdDz5n9weU
https://youtube.com/watch?v=UNHJpZ7HgQo
https://youtube.com/watch?v=QFWL9RRVhk4
https://youtube.com/watch?v=M8imYAEOkPk
https://youtube.com/watch?v=eIFxOdp6_4k
https://youtube.com/watch?v=5cIU96a8iAs
https://youtube.com/watch?v=XZ1x52ufb4k
https://youtube.com/watch?v=7hBushe7_yg
https://youtube.com/watch?v=3ZceMlPw_2o
https://youtube.com/watch?v=p7wfPTYMWG8
https://youtube.com/watch?v=SRnNJiUjnfw
https://youtube.com/watch?v=-oGrK_7tSAs
https://youtube.com/watch?v=YIEXNHfj4Hc
https://youtube.com/watch?v=ZhjxLxHQ0P8
https://youtube.com/watch?v=wosFpMkO5_Y
https://youtube.com/watch?v=q1XZyuPWebg
https://youtube.com/watch?v=V7PNAHf0iN4


C.3 Buyer’s Premiums

Saleroom Location Christie’s Sotheby’s

Threshold Rate Threshold Rate

Hong Kong ≤HK$7.5M 26.0% ≤HK$7,500,000 26.0%

>HK$7.5M and ≤ HK$50M 20.0% >HK$7.5M and ≤HK$40M 20.0%

>HK$50M 14.5% >HK$40M 13.9%

London ≤700k 26.0% ≤800k 26.0%

>700,000 and ≤4.5M 20.0% >800k and ≤3.8M 20.0%

>4.5M 14.5% >3.8M 13.9%

Paris ≤700k 26.0% ≤800k 26.0%

>700,000 and ≤4M 20.0% >800k and ≤3.5M 20.0%

>4M 14.5% >3.5M 13.9%

New York ≤$1M 26.0% ≤$1M 26.0%

>$1M and ≤$6M 20.0% >$1M and ≤$4.5M 20.0%

>$6M 14.5% >$4.5M 13.9%

Shanghai ≤6M 26.0% - -

>6M and ≤40M 20.0% - -

>40M 14.5% - -

This table is accurate as of February 7 2022 for Christie’s and February 1 2023 for Sotheby’s. In
the last 10 years, there are only minor changes to the base rate (i.e. lowest threshold category).
These buyer premium thresholds are additive, so final transaction amounts are strictly increasing.
Source: Christie’s and Sotheby’s Websites.

Table 8: Buyer’s Premiums in Christie’s and Sotheby’s Auctions
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