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Abstract

In many partially identified econometric models, sharp identified sets can be gener-

ically characterized using specific moment inequalities known as Artstein’s inequalities.

Although such a characterization is theoretically appealing, the resulting collection of

inequalities typically includes many redundant elements, which do not carry additional

identifying information but make the analysis computationally intractable. In this pa-

per, we characterize the smallest possible collection of moment inequalities that suffices

for sharpness and provide an efficient algorithm to obtain such inequalities in practice.

As a result, we obtain tractable characterizations of sharp identified sets in several

well-studied settings. In situations when the smallest collection of inequalities is still

infeasible, we discuss additional modeling assumptions that further simplify compu-

tation. We apply the results to the models of static and dynamic games, potential

outcomes, discrete choice, network formation, selectively observed data, and ascend-

ing auctions, and demonstrate in simulations that the proposed method substantially

improves upon informal inequality selection.
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1 Introduction

Many econometric models have the following structure: Given covariates X ∈ X , latent

variables U ∈ U , and parameters θ ∈ Θ, the model produces a set G(U,X; θ) ⊆ Y of

possible values for the outcome Y ∈ Y . The researcher does not observe G(U,X; θ) directly,

but postulates that Y ∈ G(U,X; θ0), almost surely, for some θ0 ∈ Θ. The mechanism

that selects a single value Y from the set G(U,X; θ0) may be somehow restricted or left

completely unspecified.1 Examples of such settings include static and dynamic entry games

(e.g., Tamer, 2003; Ciliberto and Tamer, 2009; Berry and Compiani, 2020; Gu et al., 2022);

network formation models (e.g., Miyauchi, 2016; De Paula et al., 2018; Sheng, 2020; Gualdani,

2021); English auctions (e.g., Haile and Tamer, 2003; Aradillas-López et al., 2013); models

with missing or interval data (e.g., Manski, 1994, 2003; Beresteanu et al., 2011); potential

outcome models (e.g., Heckman et al., 1997; Manski and Pepper, 2000, 2009; Beresteanu

et al., 2012; Russell, 2021); and discrete choice models with endogeneity (e.g., Chesher et al.,

2013; Chesher and Rosen, 2017; Torgovitsky, 2019; Tebaldi et al., 2019) or unobserved or

counterfactual choice sets (e.g., Manski, 2007; Barseghyan et al., 2021).

Sharp identified sets in such models can be generally characterized as follows. By as-

sumption, Y ∈ G(U,X; θ0), almost surely, so {G(U,X; θ0) ⊆ A} implies {Y ∈ A}, for any
measurable set A ⊆ Y . Thus, at θ = θ0, the inequalities

P (Y ∈ A |X = x) 󰃍 P (G(U,X; θ) ⊆ A |X = x; θ) (1)

must hold for all A ⊆ Y and x ∈ X . Therefore, a natural identified set for θ is

Θ0 = {θ ∈ Θ : (1) holds for all A ⊆ Y , x ∈ X}. (2)

The results of Artstein (1983) and Theorem 2.33 in Molchanov and Molinari (2018) imply

that the inequalities in (1) hold if and only if Y ∈ G(U,X; θ), almost surely. Therefore,

assuming the parameter space Θ captures all other restrictions imposed on the model, the

identified set Θ0 is sharp.

The characterization in (2) is often impractical since the total number of Artstein’s

inequalities may be very large. In such settings, it is customary to select a smaller collection

of inequalities based on intuition or experience and proceed with an outer set for Θ0. This

approach has two important drawbacks: First, omitting an important inequality may lead

1In some examples, the set-valued predictions naturally arise in the space of latent variables, rather
than the outcome space. Specifically, given Y,X, and θ, the model produces a set G(Y,X; θ) such that
U ∈ G(Y,X; θ0) for some θ0 ∈ Θ0. As discussed in Chesher and Rosen (2017), the two approaches are
equivalent. Our analysis applies in both settings.
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to a substantial loss of identifying information; Second, having outer identified sets that are

very narrow may be a symptom of “identification by misspecification” and potentially lead

to misleading conclusions (see Kédagni et al., 2020).

At the same time, examples suggest that many inequalities in (2) may be redundant, in

the sense that omitting them does not change the resulting identified set. By finding and

removing such inequalities, it is often possible to keep the analysis tractable while avoiding

information loss and mitigating misspecification concerns. This paper proposes a simple and

computationally efficient way to do so.

To address inequality selection, we focus on core-determining classes following Galichon

and Henry (2011); Chesher and Rosen (2017); Luo and Wang (2018); and Molchanov and

Molinari (2018). Consider the Artstein’s inequalities in (1) for a fixed X = x. A class of C
of subsets of Y is called a core-determining class (CDC) if verifying (1) for all A ∈ C suffices

to conclude that it holds for all A ⊆ Y . Evidently, smaller classes C lead to more concise

characterization of the sharp identified set. In this paper, we obtain a simple analytical

characterization of the smallest possible CDC. We show that such CDC depends only on

the structure of the model’s correspondence G(U, x; θ) and the null sets of the underlying

probability distribution and typically needs to be computed only a finite number of times.

We also develop a new algorithm for computing the smallest CDC, which avoids the major

computational bottleneck of checking all candidate sets for redundancy. The algorithm

operates by checking the connectivity of suitable subgraphs of a bipartite graph, which

represents the model’s correspondence, and is output-sensitite: its’ computational complexity

is proportional to the size of the smallest CDC. We apply the proposed methodology to obtain

tractable characterizations of sharp identified sets in several well-studied settings.

This paper contributes to the large and growing literature on econometrics with partial

identification; see, e.g., Pakes et al. (2015); Molinari (2020); Chesher and Rosen (2020);

and Kline et al. (2021) for detailed reviews. The key object in the identification analysis

is the set P(x; θ) of model-implied distributions of the outcome Y , given covariates X = x

and a parameter value θ ∈ Θ. By construction, the sharp identified set for θ0 is given by

Θ0 = {θ ∈ Θ : PY |X=x ∈ P(x; θ), x ∈ X -a.s.}. Existing approaches to identification are

based on obtaining tractable characterizations of the set P(x; θ).

Several existing papers represent the set P(x; θ) using the Artstein’s inequalities in (1).

Galichon and Henry (2011) discuss several methods for computing sharp identified sets in

discrete games. They consider submodular optimization and optimal transport approaches,

which we discuss in more detail in Section 4.3, and introduce the notion of core-determining

classes. In particular, they show that if the model’s correspondence is suitably monotone,

there exists a CDC whose size scales linearly with the size of the outcome space. In general,
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however, even the smallest CDC may grow exponentially with the size of the outcome space,

and it is much harder to characterize. This paper extends the results of Galichon and

Henry (2011) by deriving the smallest possible CDC without any restrictions on the model’s

correspondence and developing an efficient algorithm to compute it in practice.

Chesher and Rosen (2017) derive analytical sufficient conditions for identifying redundant

Artstein’s inequalities. In this paper, we obtain a richer set of necessary and sufficient

conditions for redundancy and use it to characterize the smallest possible CDC. Moreover,

we provide a new algorithm to compute such CDC in practice. Bontemps and Kumar

(2020) characterize the smallest CDC in a class of entry games with complete information

and provide an algorithm to compute it. Our Theorem 1 and Algorithm 3 yield the same

characterization in this example, but apply far more generally.

Luo and Wang (2018) also give a characterization of the smallest CDC, which they call

“exact,” in their Theorem 2. We improve on and extend this result in several directions.

First, although Theorem 1 below leads to the same CDC as Theorem 2 in Luo and Wang

(2018), when coupled with Lemmas 1 and 2, it provides a more transparent and complete

characterization. These new results identify the “critical” sets, which must be included in

any CDC, as well as “implicit-equality” sets, for which the corresponding Artstein’s inequal-

ities always bind. Second, Corollary 1.1 establishes that the smallest CDC depends only

on the supports of the random sets G(U, x; θ), conditional on X = x. Since the support

typically has limited dependence on parameter values and covariates, this result implies that

in discrete-outcome models, the CDC only needs to be computed a finite number of times

and that the conditional Artstein’s inequalities can be intersected,2 which leads to a sim-

pler characterization of sharp identified sets in many settings. Third, Theorem 1 implies an

efficient algorithm for computing the smallest CDC numerically, which remains feasible far

beyond Algorithm 1 of Luo and Wang (2018). Finally, in Section 5, we extend the main

results to settings in which the outcome variable has infinite support.

Other closely related papers are Beresteanu et al. (2011) and Mbakop (2023). Beresteanu

et al. (2011) study discrete games under different solution concepts and characterize the set

P(x; θ) as the Aumann expectation of a suitably defined random set. Convexity of the Au-

mann expectation allows to express it via the support function and thus characterize the

sharp identified set through a convex optimization problem. In turn, Mbakop (2023) studies

panel discrete choice models and argues that, under certain restrictions on the distribution

of unobservables, the sets P(x; θ) are polytopes and the inequalities that define their facets

can be computed by solving a multiple-objective linear program. The CDC approach com-

plements these methods and, as we argue below, enables faster computation and simpler

2Given a collection of inequalities θ(x) 󰃍 0, for all x ∈ X , by “intersecting” we mean infx∈X θ(x) 󰃍 0.
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inference procedures in many settings.

Other related work includes Tebaldi et al. (2019) and Gu et al. (2022). The former

paper studies discrete choice models with endogeneity and the latter covers general discrete-

outcome models. Both papers focus on obtaining sharp bounds directly on the counterfac-

tual of interest, φ(θ0) ∈ R, rather than the full vector of parameters θ0 ∈ Θ. They consider

counterfactuals that can be expressed as linear functions of the probabilities of regions in a

suitable partition of the latent variable space. If the restrictions on the distribution of latent

variables induce only a finite number of linear constraints on such probabilities, the sharp

bounds on the counterfactual can be obtained using linear programming. A similar approach

is taken by Russell (2021), who studies a potential outcomes model with endogenous treat-

ment assignment. The author compares different approaches to characterizing sharp bounds

on functionals of the joint distribution of potential outcomes in terms of the complexity of

the resulting optimization problems. In the above settings, we show that the CDC approach

leads to simpler optimization problems if the smallest CDC is manageable and the excluded

exogenous variables have rich support.

The algorithm we propose is related to the problems of identifying redundant constraints

in linear systems (Telgen, 1983), computing a minimal half-space representation for a special

class of convex polytopes (Avis and Fukuda, 1991), and listing maximal independent sets in

bipartite graphs (Tsukiyama et al., 1977), and may be of independent interest. We defer a

more detailed discussion to Section 4 and Appendix B.3.

The rest of the paper is organized as follows. Section 2 presents motivating examples and

provides some background. Section 3 presents novel theoretical results. Section 4 discusses

computation. Section 5 provides an extension to models in which the outcomes have infinite

support. Section 6 illustrates the utility of selecting inequalities. Section 7 concludes.

2 Models with Set-Valued Predictions

2.1 Motivating Examples

To outline the scope of the paper, we start with three stylized examples, all of which feature

outcomes with finite support. Additional examples are considered in Appendix D, and a

discussion of continuous-outcome models is deferred to Section 5.

The first example is a static entry game studied by Bresnahan and Reiss (1991); Berry

(1992); Tamer (2003); Ciliberto and Tamer (2009); Beresteanu et al. (2011); and Aradillas-

López (2020).
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Example 1 (Static Entry Game). Each ofN firms, indexed by j = 1, . . . , N , decides whether

to stay out or enter the market, Yj ∈ {0, 1}. The payoff of firm j is

πj(Y, εj) = Yj(αj + δjNj(Y ) + εj),

where Y = (Y1, . . . , YN) ∈ {0, 1}N is the outcome vector, Nj(Y ) is number of entrants

except j, U = (ε1, . . . , εN) ∈ RN are payoff components unobserved to the researcher, and

(αj, δj)
N
j=1 ∈ R2N are payoff parameters. The joint distribution of latent variables U , denoted

F (·; γ), is assumed to be known up to a finite-dimensional parameter γ ∈ Rdγ . Exogenous

covariates X can be accommodated by letting (αj, δj, γ) = (αj(X), δj(X), γ(X)), but are

omitted here for simplicity. The firms have complete information and play a pure-strategy

Nash Equilibrium. The researcher observes Y ∈ {0, 1}N and wants to learn about features

of θ = ((αj, δj)
N
j=1, γ). Given U and θ, the model produces a set of predictions for Y

corresponding to the set of pure-strategy Nash Equilibria:

G(U ; θ) = {y ∈ {0, 1}N : yj = 1(αj + δjNj(y) + εj 󰃍 0), for all j = 1, . . . , N}.

Figure 1 illustrates possible realizations of G(U ; θ) when N = 2 and δj < 0 for j = 1, 2.

Dashed lines outline the partition of the latent variable space that corresponds to possible

realizations of G(U ; θ), highlighted in blue. 󰃈

The next example is a simple dynamic model adapted from Berry and Compiani (2020).

Example 2 (Dynamic Monopoly Entry). In time period t = 1, . . . , T , a firm decides to stay

out of or enter the market, At ∈ {0, 1}. The per-period profit is

π(Xt, At, εt) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

π̄ − εt if Xt = 1, At = 1;

π̄ − εt − γ if Xt = 0, At = 1;

0 otherwise,

where Xt ∈ {0, 1} indicates whether the firm was active in period t − 1, εt ∈ R is the

variation in fixed costs, observed by the firm, and (π̄, γ) are the corresponding fixed profit

and sunk costs of entering the market. Suppose that εt = ρεt−1 +
󰁳

1− ρ2vt for some

ρ < 1, and vt are i.i.d. N(0, 1). As in the preceding example, the parameters π̄, γ, and ρ

may depend on exogenous covariates, omitted here for simplicity. The researcher observes

Y = (X1, A1, . . . , AT ) ∈ {0, 1}T+1.
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(a) Static entry game from Example 1
with N = 2 and δj < 0 for j = 1, 2.

(b) Dynamic model from Example 2 with
T = 2. Outcomes are labeled (X1, A1, A2).

Figure 1: Set-valued predictions in Examples 1 and 2.

The Bellman equation for the firm’s problem is

V (Xt, εt) = max
At∈{0,1}

󰀓
π(Xt, At, εt) + δ E[V (Xt+1, εt+1) |At, Xt, εt]

󰀔
,

where δ ∈ (0, 1) denotes the discount factor, which is assumed known. Under standard

conditions, there is a unique stationary solution, At = 1(Ut 󰃑 τθ(Xt)), where Ut is the

quantile transformation of εt, and τ is an increasing function of Xt known up to θ = (π̄, γ, ρ).

Note that X1 is endogenous and its data-generating process is left unspecified. One way

to proceed is to treat X1 as part of the outcome vector Y = (X1, A1, . . . , AT ). Then, given

U = (U1, . . . , UT ) and θ, the model produces a set of possible values for Y given by

G(U ; θ) = {(x1, a1, . . . , aT ) : at = 1(Ut 󰃑 τθ(xt)) for t = 1, . . . , T}.

Figure 1 illustrates possible realizations of G(U ; θ) for T = 2. Dashed lines outline the

partition of the latent variable space that corresponds to the possible realizations of G(U ; θ),

highlighted in blue. 󰃈

The final example is a potential outcomes model studied in Balke and Pearl (1997),

Heckman et al. (1997), Heckman and Vytlacil (2007), Beresteanu et al. (2012); Russell

(2021), and Bai et al. (2024), among many others.

Example 3 (Potential Outcomes Models). Let D ∈ D denote the treatment assignment,
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(a) No restrictions on outcome response. (b) Increasing outcome response, Y ∗
1 󰃍 Y ∗

0 .

Figure 2: Set-valued predictions Example 3 with |D| = 2 and |Y| = 4.

Y ∗ = (Y ∗
d )d∈D ∈ Y |D| — potential outcomes, Y = Y ∗

D — observed outcome, and Z ∈ Z —

instrumental variables. Suppose Y ∗ and Z are statistically independent and the outcome

response function d 󰀁→ Y ∗
d satisfies additional restrictions summarized by Y ∗ ∈ Y∗ for some

known set Y∗ ⊆ Y |D| (e.g., monotonicity, partial monotonicity, concavity, etc.). Suppose the

sets D and Y are finite, and Z is arbitrary. The primitive parameter of interest is the joint

distribution of potential outcomes, θ = {P (Y ∗ = y∗)}y∗∈Y|D| .

In this example, it is more convenient to construct the set-valued prediction for the latent

variables Y ∗ given observables (Y,D, Z). If D = d, then Y ∗
d = Y , but the only information

available about Y ∗
d̃
for d̃ ∕= d is that Yd̃ ∈ Y and Y ∗ ∈ Y∗. Thus, the set-valued prediction

for Y ∗ can be written as:

G(Y,D) = BD(Y ) ∩ SY ∗ ,

where Bd(Y ) = (Y × · · · × {Y } × . . .Y) with {Y } in the d-th component. Notice that Z

does not affect G(Y,D) in any way. Figure 2 illustrates two possible realizations of G(Y,D)

with D ∈ {0, 1} and Y = {y1, y2, y3, y4}. The vertical blue line corresponds to G(y2, 0)

and the horizontal blue line to G(y3, 1). In Panel (a), SY ∗ = Y2 and and in Panel (b),

SY ∗ = {(y, y′) ∈ Y2 : y 󰃑 y′}. 󰃈

2.2 Background: Random Sets and Artstein’s Inequalities

In the above examples, the set-valued prediction of the model depends on a realization of

some random variables, so it is a random set. Identification in such settings can naturally

be studied using tools from the theory of random sets. We briefly introduce the necessary

concepts and refer the reader to Molchanov and Molinari (2018) for a textbook treatment.

Let Y ∈ Y ⊆ RdY denote the outcome variables, X ∈ X ⊆ RdX — observed covariates,

and U ∈ U ⊆ RdU — latent variables. All random variables are defined on a common,
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complete probability space (Ω,F , P ). Let C denote the class of all closed subsets of Y , B —

the Borel sigma-field on Y , and M — the set of all probability measures on (Y ,B).
Suppose the econometric model is characterized by a parameter vector θ ∈ Θ, which

may be infinite-dimensional, and a correspondence G(·, · ; θ) : U × X 󰃃 Y , which delivers a

set-valued prediction for the outcomes. We assume that, for each θ ∈ Θ, the correspondence

G(·, · ; θ) is measurable in the sense that {ω ∈ Ω : G(U(ω), X(ω); θ) ⊆ A} ∈ F , for all A ∈ C.

We further assume that G(U,X; θ) is non-empty and closed, P -almost surely, for all θ ∈ Θ.

Such a correspondence defines a random closed set. The distribution of a random closed set

can be described by its’ containment functional, defined, for all A ∈ C,3 as

CG(U,X;θ)(A) = P (G(U,X; θ) ⊆ A),

Any random variable Y , satisfying P (Y ∈ G(U,X; θ)) = 1 is called a selection of G(U,X; θ).

The set of distributions of all selections is called the core. Artstein (1983) showed that the

core consists of all probability distributions that dominate the containment functional on

closed sets, that is

Core(G(X,U ; θ)) = {µ ∈ M : µ(A) 󰃍 CG(U,X;θ)(A), for all A ∈ C}.

To characterize the core in practice, it may suffice to consider a smaller class of sets.

Definition 2.1 (Core-Determining Class). For any class of sets C ⊆ C, denote

M(C) = {µ ∈ M : µ(A) 󰃍 CG(U,X;θ)(A), for all A ∈ C}.

A class C ⊆ C is core-determining if M(C) = M(C).

We will distinguish two special types of sets.

Definition 2.2 (Critical and Implicit-Equality Sets). A set A ∈ C is critical if M(C\A) ∕=
M(C). A set A ∈ C\{Y ,∅} is an implicit-equality set if µ(A) = CG(U,X;θ)(A), for all

µ ∈ Core(G(U,X; θ)).

Any core-determining class must contain all critical sets and ensure that all implicit-

equality constraints hold. To illustrate these definitions, suppose the outcome space Y is

3It suffices to specify the containment functional on all closed sets, but it can be extended and remains well-
defined on all Borel sets. Equivalently, the distribution of a closed random set may be characterized by the
capacity functional, TG(U,X;θ)(A) = P (G(U,X; θ)∩A ∕= ∅), which satisfies TG(U,X;θ)(A) = 1−CG(U,X;θ)(A

c).
The same comment applies to the core of a random set defined ahead. See Sections 1.2–1.3 of Molchanov
and Molinari (2018) for the details.
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Figure 3: Stylized illustration: The core of a random set.

finite. Then, M is a simplex in R|Y| and Core(G(U,X; θ)) is a compact polyhedron, such as

the one depicted in Figure 3. Here, A0 contains all implicit-equality sets, and the gray shaded

region depicts the set {µ ∈ M : µ(A) = CG(U,X;θ)(A), for all A ∈ A0}. The straight lines

correspond to Artstein’s inequalities with arrows indicating the directions in which they are

satisfied. The core is highlighted in blue. Any class of sets that includes A0∪{A1, A2, A4, A5}
is core-determining. The sets A1, A2, A4, A5 are critical, while the sets A3, A6 are not.

3 Sharp Identified Sets with Finite Outcome Spaces

Suppose the model predicts that Y ∈ G(U,X; θ0), almost surely, for some θ0 ∈ Θ. With the

above definitions, the sharp identified set for θ0 can be characterized as4

Θ0 = {θ ∈ Θ : PY |X=x(A) 󰃍 CG(U, x; θ) |X=x(A), for all A ∈ C(x, θ), a.s. x ∈ X}, (3)

where C(x, θ) ⊆ C is a core-determining class for the random set G(U, x; θ) conditional on

X = x, and CG(U,x;θ) |X=x(A) = P (G(U, x; θ) ⊆ A |X = x) is the conditional capacity func-

tional. In this section, we characterize the smallest possible core-determining class C∗(x; θ),

clarify how it depends on x and θ, and obtain sharp identified sets in several applications.

Until Section 5, we focus on settings with a finite outcome space, so C = B = 2Y .

4The equivalence between the unconditional and conditional Artstein’s inequalities follows from Theorem
2.33 in Molchanov and Molinari (2018).
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3.1 Graph Representation

Fix some x ∈ X and θ ∈ Θ. Let S(x, θ) = {G1, . . . , GK} denote the support of G(U, x; θ)

conditional on X = x, i.e., the set of sets Gk ⊆ Y such that P (G(U, x; θ) = Gk |X = x) > 0.

Partition the latent variable space U accordingly, uk = {u ∈ U : G(u, x; θ) = Gk}, and
denote U(x, θ) = {u1, . . . uK}. Define a probability measure P(x,θ) on U(x, θ) by P(x,θ)(uk) =

PU |X=x({u : G(u, x; θ) = Gk}). Then, the random set G(U, x; θ), conditional on X = x, can

be viewed as a correspondence G : (U(x, θ), 2U(x,θ), P(x,θ)) 󰃃 Y between two finite spaces.

In what follows, with some abuse of notation, we denote U(x; θ) by U and P(x;θ) by P , let

G : U 󰃃 Y denote the random set G(U, x; θ), conditional on X = x, and CG(·) denote the

conditional containment functional, CG(A) = P (G(U, x; θ) ⊆ A |X = x). For each A ⊆ Y ,

we denote the lower and upper inverses of G by

G−(A) = {uk ∈ U : G(uk) ⊆ A}; G−1(A) = {uk ∈ U : G(uk) ∩ A ∕= ∅}

Note that G−(A) ⊆ G−1(A).

We represent the correspondence G by an undirected bipartite graph B with vertices

V (B) = (Y ,U) and edges E(B) = {(u, y) ∈ U × Y : y ∈ G(u)}. For any given x and θ,

the graph B can be constructed either analytically or numerically, by partitioning the latent

variable space as in Figure 1. Note that, although the thresholds defining the partition

depend on x and θ, the graph stays the same as long as each of the regions in the partition

has non-zero probability. The following examples illustrate.

Example 1 – 3 (Continued). Figure 4 presents the bipartite graphs for Examples 1 – 3.

Panel (a) depicts the binary entry game with negative spillovers from Example 1. The

upper part represents the outcome space {0, 1}2, and the lower part represents the partition

of latent variable space illustrated in Figure 1. For example, u1 = {(ε1, ε2) ∈ R2 : εj <

−αj, j = 1, 2}, and u3 = {(ε1, ε2) ∈ R2 : −αj 󰃑 εj < −αj − δj}. Also, for example,

G(u3) = {(1, 0), (0, 1)}, G−({(1, 0)}) = u2, and G−1({(1, 0), (0, 1)}) = {u2, u3, u4}.
Panel (b) depicts the dynamic monopoly entry model from Example 2 with T = 2. The

upper part represents the outcome space {0, 1}3 with outcomes labeled as (x1, a1, a2), and

the lower part represents the partition of latent variable space illustrated in Figure 1. For

example, u2 = {(U1, U2) ∈ [0, 1]2 : τθ(0) < U1 󰃑 τθ(1), U2 󰃑 τθ(0)}, and u5 = {(U1, U2) ∈
[0, 1]2 : U1 > τθ(1), U2 > τθ(0)}. Also, for example, G({u1, u3}) = {(0, 1, 1), (1, 1, 1), (0, 0, 0)}
and G−1({(0, 1, 1), (1, 1, 1), (0, 0, 0)}) = {u1, u2, u3, u5, u6}.

Panel (c) depicts the potential outcomes model from Example 3 with D = {0, 1},
Y = {y1, y2, y3, y4}, and SY ∗ = Y2. The upper part is SY ∗ , and the lower part is D ×
Y . For example, G((0, 2)) = {(2, 1), (2, 2), (2, 3), (2, 4)} corresponds to the blue vertical
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(0, 0) (1, 0) (0, 1) (1, 1)

u1 u2 u3 u4 u5

(a) Entry game from Example 1 with N = 2 and δj < 0 for j = 1, 2.

(0, 1, 1) (1, 1, 1) (0, 0, 1) (0, 0, 0) (1, 0, 1) (1, 0, 0) (1, 1, 0) (0, 1, 0)

u1 u2 u3 u4 u5 u6 u7

(b) Dynamic binary choice model from Example 2 with T = 2.

(1, 1) (2, 1) (3, 1) (4, 1) (1, 2) (2, 2) (3, 2) (4, 2) (1, 3) (2, 3) (3, 3) (4, 3) (1, 4) (2, 4) (3, 4) (4, 4)

(0, 1) (1, 1) (0, 2) (1, 2) (0, 3) (1, 3) (0, 4) (1, 4)

(c) Potential outcomes model from Example 3 with D = {0, 1}, Y = {1, 2, 3, 4}, SY ∗ = Y2.

Figure 4: Bipartite graphs in Examples 1 – 3.

line and G((1, 3)) = {(1, 3), (2, 3), (3, 3), (4, 3)} corresponds to the blue horizontal line in

Panel (a) of Figure 2. Also, for example, G−({(2, 1), (2, 2), (2, 3), (2, 4)}) = {(0, 2)}, and
G−1({(2, 1), (2, 2), (2, 3), (2, 4)}) = {(1, 1), (0, 2), (1, 2), (1, 3), (1, 4)}. 󰃈

3.2 The Structure of Redundant Inequalities

The redundancy of Artstein’s inequalities can be expressed in terms of the connectivity of

suitable subgraphs of the graph B. A subgraph of B induced by the vertices (VY , VU) is an

undirected graph with vertices (VY , VU) and edges {(u, y) ∈ E(B) : u ∈ VU , y ∈ VY}. A

graph is said to be connected if every vertex can be reached from any other vertex through

a sequence of edges.

12



First, suppose that for some A ⊆ Y , there are sets A1, A2 ⊆ Y such that A1 ∩ A2 = ∅,

A1 ∪ A2 = A, and G−(A1 ∪ A2) = G−(A1) ∪G−(A2). Here, the latter condition means that

G ⊆ A1 ∪ A2 if and only if either G ⊆ A1 or G ⊆ A2, so CG(A1) + CG(A2) = CG(A). Then,

summing up the inequalities µ(A1) 󰃍 CG(A1) and µ(A2) 󰃍 CG(A2), we obtain

µ(A) = µ(A1) + µ(A2) 󰃍 CG(A1) + CG(A2) = CG(A), (4)

so A is redundant given A1 and A2. For example, consider the graph in Panel (b) of Figure

4. Let A1 = {(0, 1, 1), (1, 1, 1)}, A2 = {(1, 1, 0), (0, 1, 0)}, and A = A1∪A2. Then, G
−(A1) =

{u1}, G−(A2) = {u7}, and G−(A) = {u1, u7}. Thus, all of the above conditions are satisfied,
and A is redundant given A1 and A2. Importantly, note that the subgraph induced by

(A,G−(A)) is disconnected.

As a special case, suppose that A ∕= G(G−(A)), where G(G−(A)) =
󰁖

ω∈Ω{G(ω) : G(ω) ⊆
A}. That is, the set A cannot be expressed as a union of elements of the support of G.

Letting A1 = G(G−(A)) and A2 = A\A1, we have G−(A1) = G−(A) and G−(A2) = ∅.

The inequality µ(A2) 󰃍 CG(A2) = 0 holds trivially, so, following the argument in (4), A

is redundant given A1.
5 Consider again the graph in Panel (b) of Figure 4. Let A =

{(0, 0, 1), (0, 0, 0), (1, 0, 1)} and A1 = {(0, 0, 1), (1, 0, 1)} ⊂ A. The set A cannot be expressed

as the union of elements of the support, and G−(A) = G−(A1) = {u4}. Thus, A is redundant

given A1. As before, note that the subgraph induced by (A,G−(A)) is disconnected.

Second, suppose that for some A ⊆ Y there are sets A1, A2 ∕= A such that A1 ∩ A2 = A,

A1 ∪ A2 = Y , and G−(A1) ∪ G−(A2) = U . The latter condition means that for all u ∈ U ,
either G(u) ⊆ A1 or G(u) ⊆ A2, which implies CG(A1) +CG(A2) = 1 +CG(A1 ∩A2). Then,

adding up the inequalities µ(A1) 󰃍 CG(A1) and µ(A2) 󰃍 CG(A2), we obtain

1 + µ(A) = µ(A1) + µ(A2) 󰃍 CG(A1) + CG(A2) = 1 + CG(A), (5)

so A is redundant given A1 and A2. The above conditions can be equivalently stated as

Ac
1 ∪ Ac

2 = Ac, Ac
1 ∩ Ac

2 = ∅, and G−1(Ac
1) ∩ G−1(Ac

2) = ∅. Returning to Panel (b)

of Figure 4, let A = {(1, 1, 1), (0, 0, 1), (0, 0, 0)}, A1 = A ∪ {(0, 1, 1)}, and A2 = A ∪
{(1, 0, 1), (1, 0, 0), (1, 1, 0), (0, 1, 0)}, so that A1 ∩ A2 = A. Then, G−(A1) = {u1, u2, u3} and

G−(A2) = {u2, u3, u4, u5, u6, u7}, so that G−(A1) ∪ G−(A2) = U . Therefore, A is redundant

given A1 and A2, as in Equation (5). In this case, the subgraph induced by (Ac, G−1(Ac)) is

disconnected.

5 This observation implies that we may restrict attention to sets A which can be expressed as unions of
elements of the support. See the errata to Beresteanu et al. (2012), Chesher and Rosen (2017), and Theorems
2.22–2.23 in Molchanov and Molinari (2018) for related arguments.
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Thus, for any set A ⊆ Y that is redundant according to (4) or (5), the subgraph of B

induced by either (A,G−(A)) or by (Ac, G−1(Ac)) is disconnected. As we show below, this

simple property characterizes all redundant sets.

3.3 The Smallest Core-Determining Class

Following the above discussion, we say that a set A ⊆ Y is self-connected if the subgraph of

B induced by (A,G−(A)) is connected. Say that A is complement-connected if the subgraph

of B induced by (Ac, G−1(Ac)) is connected. Our first result characterizes the critical sets.

Lemma 1. Let U = {u1, . . . , uK} and Y = {y1, . . . , yS} be finite sets, and G : (U , 2U , P ) 󰃃 Y
be a non-empty random set with a bipartite graph B. Suppose that B is connected and

P (uk) > 0, for all uk ∈ U . A set A ∈ 2Y\{Y ,∅} is critical if and only if it is self-connected

and complement-connected.

The proof of this result is constructive: Given a set A that is both self- and complement-

connected, we construct a distribution µ ∈ Core(G) such that µ(A) = CG(A) and µ(Ã) >

CG(Ã) for all Ã ∕= A. This implies that the set {µ ∈ Core(G) : µ(A) = CG(A)} corresponds

to one of the facets of Core(G),6 meaning that A is critical. For example, consider the

set A = {(0, 1, 1), (1, 1, 1), (0, 0, 1)} in Panel (b) of Figure 4. We have G−(A) = {u1, u2},
Ac = {(0, 0, 0), (1, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0)}, and G−1(Ac) = {u3, u4, u5, u6, u7}, so A is

both self- and complement-connected. Therefore, A is critical.

The assumption P (uk) > 0, for all uk ∈ U , merely ensures that there are no redundant

elements in U . Any uk with P (uk) = 0 can simply be removed from U and B together with

all its edges. In turn, as we show next, the assumption that B is connected is substantive.

Our second result characterizes the implicit-equality sets.

Lemma 2. Let U = {u1, . . . , uK} and Y = {y1, . . . , yS} be finite sets, and G : (U , 2U , P ) 󰃃 Y
a non-empty random set with a bipartite graph B. Let Y =

󰁖L
l=1 Yl be the finest partition of

the outcome space such that Yk ∩ Yl = ∅ and G−1(Yk) ∩G−1(Yl) = ∅, for all k ∕= l. Then,

A is an implicit-equality set if and only A =
󰁖

l∈LA
Yl for some LA ⊆ {1, . . . , L}.

That is, (Yl)
L
l=1 are the “basic” implicit-equality sets, satisfying µ(Yl) = CG(Yl), for all

µ ∈ Core(G). These constraints are linearly dependent since
󰁓L

l=1 µ(Yl) =
󰁓L

l=1 CG(Yl) = 1,

so any single one of them can be omitted without loss. The sets Yl are easy to detect in

practice: The graph B “breaks” into L connected components Bl with vertices V (Bl) =

(Yl, G
−1(Yl)) and edges E(Bl) = {(u, y) ∈ G−1(Yl)× Yl : y ∈ G(u)}. For example, in Panel

6See, e.g., Theorem 8.1. in Schrijver (1998).
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(a) of Figure 4, the implicit-equality sets are {(0, 0)}, {(1, 1)}, and {(1, 0), (0, 1)}. In panels

(b)–(c), the graph B is connected, so there are no implicit-equality sets.

Combining Lemmas 1 and 2 yields our main result, characterizing the smallest CDC.

Theorem 1. Let U = {u1, . . . , uK} and Y = {y1, . . . , yS} be finite sets, and G : (U , 2U , P ) 󰃃
Y a non-empty random set with a bipartite graph B and containment functional CG(·).
Suppose P (uk) > 0 for all uk ∈ U . The following statements hold.

1. Suppose B is connected. Let C∗ denote the class of all critical sets, as in Lemma 1.

Then,

Core(G) = {µ ∈ M : µ(A) 󰃍 CG(A), ∀A ∈ C∗}.

Moreover, C∗ is the smallest CDC.

2. Suppose B can be decomposed into connected components, (Bl)
L
l=1, as in Lemma 2. Let

C∗
l denote the class of all critical sets in Bl, as in Lemma 1. Then,

Core(G) = {µ ∈ M : µ(A) 󰃍 CG(A), ∀A ∈ C∗
l , µ(Yl) = CG(Yl), ∀l ∈ {1, . . . , L}}

Moreover,
󰁖L

l=1 C∗
l ∪ Yl is the smallest CDC (up to removing a single arbitrary Yl).

This result has two key implications. For future reference, we state the first implication

as a corollary. Recall the discussion in Section 3.1.

Corollary 1.1. For any x ∈ X and θ ∈ Θ, let S(x; θ) denote the support and C∗(x; θ) denote

the smallest core-determining class of the random set G(U, x; θ), conditional on X = x. If

S(x; θ) = S(x′, θ′) for some θ, θ′ ∈ Θ and x, x′ ∈ X , then C∗(x; θ) = C∗(x′; θ′).

That is, the smallest core-determining class only depends on the support of the underlying

random set. As Gu et al. (2022) point out, in discrete-outcome models, the parameter space

can typically be partitioned as Θ =
󰁖M

m=1 Θm, with Θm ∩ Θl = ∅ for m ∕= l, so that

S(x; θ) = Sm(x) for all θ ∈ Θm, for each m ∈ {1, . . . ,M}. Then, C∗(x, θ) = C∗
m(x) for all

θ ∈ Θm, so the sharp identified set for θ can be expressed as

Θ0 =
M󰁞

m=1

󰀋
θ ∈ Θm : PY |X=x(A) 󰃍 CG(U,x;θ)(A), for all A ∈ C∗

m(x), x ∈ X
󰀌
.

Additionally, it is often the case that S(x; θ) = S(x′; θ) for all x, x′ ∈ X , all θ ∈ Θm. Then,

C∗(x, θ) = C∗
m for all θ ∈ Θm and all x ∈ X , so the sharp identified set for θ is

Θ0 =
M󰁞

m=1

󰀝
θ ∈ Θm : essinf

x∈X

󰀃
PY |X=x(A)− CG(U,x;θ)(A)

󰀄
󰃍 0, for all A ∈ C∗

m

󰀞
.
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Examples in the following section illustrate.

The second key implication of Theorem 1 is that the smallest CDC can be computed by

checking the connectivity of suitable subgraphs of B. This feature allows us to devise an

algorithm that avoids the major computational bottleneck of checking all 2|Y| − 2 candidate

inequalities for redundancy. Further details are provided in Section 4.

3.4 Discussion and Applications

In this section, we apply Theorem 1 to characterize sharp identified sets in Examples 1–3.

We show that the smallest CDC often leads to a much more tractable characterization of

the sharp identified set and only needs to be computed a few times across the values of θ

and X. In some settings, even the smallest CDC is too large to be practically useful, so we

consider additional restrictions on the structure of the model’s correspondence to simplify

the analysis without losing sharpness. Examples 2 and 3 consider instrumental variables.

The online appendix contains additional applications to discrete choice with endogeneity and

directed network formation.

Example 1 (Continued). First, suppose δj < 0 for all j, so firms compete with each other

upon entering the market.7 For N = 2, the partition of the space of latent variables is

illustrated in Figure 1, and the corresponding bipartite graph is in Panel (a) of Figure 4.

While the regions in the partition and their corresponding probabilities change with the

values of θ = ((αj, δj)
N
j=1, γ), the bipartite graph remains the same as long as all δj < 0.

Therefore, the smallest CDC only needs to be computed once. The same conclusion applies

when αj(x) and δj(x) are functions of exogenous covariates, as long as δj(x) < 0 for all j =

1, . . . , N , a.s. x ∈ X . Assuming that U = (ε1, . . . , εN) and X are statistically independent,

the sharp identified set for θ can be expressed as

Θ0 = {θ ∈ Θ : essinfx∈X
󰀃
PY |X=x(A)− CG(U,x;θ) |X=x(A)

󰀄
󰃍 0, for all A ∈ C∗}.

In this model, the set of Nash Equilibria can only contain equilibria with the same number

of entrants, n ∈ {0, 1, . . . , N}, so the outcome space can be partitioned accordingly, Y =
󰁖N

n=0 Yn, and the bipartite graph B breaks down into N disjoint pieces. This property

dramatically reduces the CDC, because all sets of the form A =
󰁖N

n=0 An, where An ⊆ Yn,

are redundant.8 Table 1a summarizes the results for N ∈ {2, . . . , 6}. Although the CDC is

substantially smaller than the power set of the outcome space, it quickly becomes intractable.

7See Berry (1992) for a detailed discussion and microfoundation.
8This fact follows from Theorem 1 or, alternatively, Theorem 3 from Chesher and Rosen (2017) or Theorem

2.23 from Molchanov and Molinari (2018).
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Next, suppose δj > 0, which may be interpreted as that the firms are forming a coalition

or a joint R&D venture. In this case, the set of Nash Equilibria only contains equilibria with

different numbers of entrants. As before, whereas the relevant partition of the latent variable

space and the corresponding probabilities change with θ, the bipartite graph stays the same

as long as all δj > 0 and the CDC only needs to be computed once. Table 1a summarizes the

results for N ∈ {2, . . . , 6}. As before, even the smallest CDC quickly becomes intractable.

If the sign of δj is ex ante unknown, the parameter space Θ can be partitioned into

M = 3N regions Θ1, . . . ,ΘM , according to δj < 0, δj = 0, or δj > 0 for each j, and the CDC

should be computed separately for each region. For typical payoff specifications, δj does

not depend on any exogenous characteristics x, so the support of the random set G(U, x; θ),

conditional on X = x, does not depend on x.

The analysis can be simplified by restricting firm heterogeneity. For example, suppose

that (i) there are two types of firms such that all firms within each type are identical,

including the unobserved cost shifters; (ii) the profit functions depend only on the numbers

of entrants of each type but not their identities.9 Specifically, suppose the profit of firm

j ∈ {1, . . . , N} of type t ∈ {1, 2} takes the form

πt
j(Y ) =

󰀻
󰁁󰀿

󰁁󰀽

α1 + α2(N
1
j (Y ) +N2

j (Y )) + ε1 t = 1;

β1 + β2N
1
j (Y ) + β3N

2
j (Y ) + ε2 t = 2,

where N t
j (Y ) is the number of entrants of type t other than firm j. Suppose α1, β2, β3 < 0

and β3 󰃍 β2. With β3 = β2, this is a direct simplification of the fully heterogeneous model

discussed above. With β3 > β2, the firms compete in an asymmetric manner (e.g., type-1

firms are large and type-2 firms are small). With this payoff structure, the outcomes can be

grouped together by the number of entrants of each type. Letting N t denote the number of

potential entrants of type t ∈ {1, 2}, the outcome space is Ỹ = {0, 1, . . . , N1}×{0, 1, . . . , N2},
which leads to much simpler CDCs. Table 1a shows that the smallest CDC remains tractable

for different compositions of firm types. Three or more types can also be accommodated. 󰃈

Example 2 (Continued). For T = 2, the relevant partition of the latent variable space is

given in Figure 1, and the corresponding bipartite graph in Panel (b) of Figure 4. As long

as x 󰀁→ τθ(x) is strictly increasing, the structure of the bipartite graph does not depend on

θ, so the smallest CDC needs to be computed only once. Let Z ∈ Z denote an excluded

9A version of this model with only one type leads back to Bresnahan and Reiss (1991). The model with
two types was proposed by Berry and Tamer (2006) and also studied in detail by Beresteanu et al. (2008),
Galichon and Henry (2011), and Luo and Wang (2018).
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Heterogeneous firms

N 2 3 4 5 6

Total 14 254 65,534 109 1019

Smallest; δj < 0 4 15 94 2,109 106

Smallest; δj > 0 5 14 23,770 − −

Two types of firms

(N1, N2) (1, 1) (2, 2) (2, 4) (2, 7) (6, 6)

Total 14 62 32,766 108 1014

Smallest; β3 = β2 5 11 17 26 35
Smallest; β3 > β2 5 14 33 57 200

(a) Entry games in Example 1.

T 2 3 4 5 6 7 8 9 10

Total 30 65,534 109 1019 1038 1077 10154 10308 10616

Smallest 10 22 46 94 190 382 766 1,534 3,070

(b) Dynamic binary choice model from Example 2.

Table 1: Total number of inequalities and size of the smallest core-determining class.

Note: Symbol “−” indicates that Algorithm 3 implemented in Julia did not finish within 1 minute.

instrumental variable independent of U . Then, the sharp identified set for θ is

Θ0 = {θ ∈ Θ : essinfz∈Z P (Y ∈ A |Z = z)− P (G(U ; θ) ⊆ A) 󰃍 0 for all A ∈ C∗}.

In this example, the bipartite graph B that corresponds to the model’s correspondence has a

simple structure: Each vertex uj has exactly two neighbors, which correspond to x1 ∈ {0, 1}.
As a result, while the power set of the outcome space has cardinality 22

T+1
, the smallest CDC

grows proportionally to 2T . Table 1b summarizes the results for T ∈ {1, . . . , 10}.
In more elaborate dynamic oligopoly models, discussed by Berry and Compiani (2020),

one can adopt a type-heterogeneity assumption similar to the one in Example 1 to keep the

analysis tractable. The details are left for future research. 󰃈

Example 3. (Continued) The parameter of interest is the joint distribution of potential

outcomes, θ = PY ∗ , with a known support SY ∗ . Since the support of the random set G(Y,D)

does not depend on θ or Z, no partitioning of the parameter space is required, and the

smallest CDC needs to be computed only once. Moreover, since Z is independent of Y ∗,

Θ0 = {θ = PY ∗ : PY ∗(A) 󰃍 esssupz∈Z P (G(Y,D) ⊆ A |Z = z), for all A ∈ C∗},
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Unrestricted outcome response

|D| = 2 \ |Y| 2 3 4 5 6 7 8

Total 16 512 65,534 107 1011 1014 1019

Smallest 8 42 204 910 3,856 15,890 64,532

Monotone outcome response

|D| \ |Y| 2 3 4 5 6 7 8

2 4 12 36 124 468 1836 7300
3 6 33 220 1,719 14,002 114,349 −
4 8 82 1,126 18,087 297,585 − −

Monotone and concave outcome response

|D| \ |Y| 2 3 4 5 6 7 8

3 4 17 81 504 3,470 25,689 194,074
4 4 17 110 973 10,106 121,755 −

Table 2: Core-determining classes in the potential outcomes model from Example 3.

Note: Symbol “−” indicates that Algorithm 3 implemented in Julia did not finish within 1 minute.

where C∗ denotes the smallest CDC.10

Let us now examine the size of C∗. First, consider the model without any restrictions

on the support of Y ∗. The corresponding bipartite graph (e.g., Panel (c) of Figure 4)

is connected, so there are no implicit-equality sets, and all critical sets can be described

analytically. Unions of elements of the support of G(Y,D) are “lattice-shaped” sets A =

B1 × B2 · · · × B|D|, where each Bd ⊆ Y (but not necessarily singleton, as in Figure 2).

If at least two of the sets Bd are strict subsets of Y , any configuration of the remaining

|D| − 2 sets Bd′ leads to a critical set A. If Bd ⊂ Y for some d, and Bd′ = Y for all

d′ ∕= d, the corresponding Artstein’s inequalities restrict only the marginal distribution of

the Y ∗
d , so it suffices to consider singleton Bd. Thus, the total number of critical sets is

󰁓|D|
k=2

󰀃|D|
k

󰀄
(2|Y| − 2)k + |Y||D|. Panel (a) of Table 2 provides some examples with |D| = 2.

Next, consider imposing constraints on the outcome response function d 󰀁→ Y ∗
d . Suppose

D = {d1, . . . , d|D|} is totally ordered. Then, for example, setting SI
Y ∗ = {y∗ ∈ Y |D| : y∗d 󰃑

y∗d+1 for all d = 1, . . . , |D| − 1} ensures that d 󰀁→ Y ∗
d is increasing and SIC

Y ∗ = SI
Y ∗ ∩ {y∗ ∈

10In this setting, Russell (2021) compared three approaches: (i) all Artstein’s inequalities, (ii) the smallest
available CDC based on Luo and Wang (2018), and (iii) the dual approach of Galichon and Henry (2011).
Since the results of Luo and Wang (2018) did not allow intersecting conditional Artstein’s inequalities over
the values of the instrument, the author concluded that the CDC approach is never preferable. However, as
we argued above, intersecting such inequalities is valid, so (ii) is always simpler than (i). When the smallest
CDC is very large and Z is small, the dual approach of Galichon and Henry (2011) may be preferable. When
Z is rich, the CDC approach is typically simpler. See Section 4.3 for a related discussion.
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Y |D| : y∗d+1 − y∗d 󰃍 y∗d+2 − y∗d+1 for all d = 1, . . . , |D| − 2} further imposes that d 󰀁→ Y ∗
d is

concave. These assumptions substantially restrict the outcome space and the corresponding

bipartite graphs, leading to much smaller CDCs. Panels (b) and (c) of Table 2 illustrate.

Finally, consider restricting the relationship between D and Z. Suppose that each unit

in the population is characterized by a vector D∗ = (D∗
z)z∈Z of potential treatments, the

observed treatment is D =
󰁓

z∈Z 1(Z = z)D∗
z , and the instrument Z is jointly independent

of (Y ∗, D∗). Let S ⊆ Y |D| ×D|Z| summarize the restrictions on the outcome and treatment

response functions. Given (Y,D, Z), the model produces a set-valued prediction for (Y ∗, D∗)

G(Y,D, Z) = {BD(Y )× BZ(D)} ∩ S,

where Bd(Y ) = (Y × · · · × {Y } × . . .Y) with {Y } in the d-th component, and Bz(D) =

(D× · · ·×{D}× . . .D) with {D} in the z-th component. Conditional on Z = z, the random

set G(Y,D, z) takes |Y||D| distinct values, and the corresponding realizations do not have

any elements in common. Thus, the corresponding bipartite graph breaks down into |Y||D|
disjoint parts corresponding to implicit-equality sets of the form G(y, d, z). Then, Artstein’s

inequalities reduce to equalities of the form P (Y ∗
d = y,D∗

z = d) = P (Y = y,D = d |Z = z),

for all (y, d) ∈ S, z ∈ Z, as in Balke and Pearl (1997) and Bai et al. (2024). 󰃈

4 Implementation and Relation to Other Methods

4.1 The Master Algorithm

Algorithm 1 below summarizes the steps necessary to characterize the sharp identified set

Θ0 as in Equation (3). Throughout, we assume that X is discrete or has been discretized

before defining the correspondence G(U,X; θ). We remark on continuous X below.

Algorithm 1 (Sharp Identified Set).

1. Partition the parameter space. Fix x ∈ X . Partition the parameter space, Θ =
󰁖M

m=1 Θm(x), so that the support of G(U, x; θ), conditional on X = x, does not change

with θ within each Θm(x). The partition can typically be constructed analytically; for

linear specifications, the partition can also be obtained numerically using Algorithm 3

in Gu et al. (2022). (Note: this step is not always required, as discussed in detail in

Section 3.4.)

2. Partition the latent variable space. Fix m ∈ {1, . . . ,M} and any θ ∈ Θm. Let

Y = {y1, . . . , yS} denote the outcome space and S(x; θ) = {G1, . . . , GK} denote the
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support of G(U, x; θ), conditional on X = x. Partition the latent variable space as

U(x, θ) = {u1, . . . uK}, where uk = {u ∈ U : G(u, x; θ) = Gk}, and define a measure

P(x,θ) on U(x,θ) by P(x,θ)(uk) = P (U ∈ uk |X = x) for all k = 1, . . . , K. The probabilities

P(x,θ) can be computed by resampling or numerical integration.

3. Construct the bipartite graph. Define vertices v1, . . . , vS corresponding to Y and

vS+1, . . . , vS+K corresponding to U(x; θ). Define the edges (vS+k, vl) for all vl ∈ Gk, for

all k = 1, . . . , K. Define the graph B.

4. Compute the smallest CDC. Apply Algorithm 3 below to compute the smallest

CDC, denoted Cm(x), for given m and x.

5. Compute the identified set. Repeating Steps 2–4, compute the classes Cm(x) for

all x ∈ X and m = 1, . . . ,M to obtain Θ0. (Note: In view of Corollary 1.1, for all x, θ

such that the support G(U, x; θ), conditional on X = x, stays fixed, the graph B, and

the smallest CDC, Cm(x), only need to be computed once.)

The above algorithm produces a system of conditional moment inequalities of the form

E[1(Y ∈ A) − 1(G(U ;X; θ) ⊆ A) |X = x] 󰃍 0, for all A ∈ Cm(x). If X is discrete or

have been discretized before defining G(U,X; θ), the inequalities can be stacked together

and tested using a variety of existing methods, such as Andrews and Soares (2010); Romano

et al. (2014), or Cox and Shi (2023). If X is continuous, the smallest CDC approach is

only practical if the support of G(U,X; θ), conditional on X = x, does not vary on x, so

partitioning Θ in Step 1 is not required. In such settings, the resulting system of conditional

inequalities can be tested using, e.g, Chernozhukov et al. (2013); Armstrong (2015), or

Andrews and Shi (2017).

4.2 Computing the Smallest Core-Determining Class

Recall from Theorem 1 that the smallest CDC consists of the critical and implicit-equality

sets. The latter can be found by decomposing the graph B into connected components, so

the main challenge is to find the critical sets within each connected component. Recall that

a set A ⊆ Y is self-connected if the subgraph of B induced by (A,G−(A)) is connected,

and complement-connected if the subgraph of B induced by (Ac, G−1(Ac)) is connected. Let

N(A) = G−1(A)\G−(A) and note that B is connected if and only if N(A) ∕= ∅, for all A.

Say that a critical set C is a minimal critical superset of A if there is no critical set C̃ such

that A ⊂ C̃ ⊂ C. In Algorithm 2 below, we construct a correspondence F : 2Y 󰃃 2Y that

takes a self-connected set A and returns all of its minimal critical supersets. By definition,
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such correspondence will satisfy A ⊆ C for each C ∈ F (A), and F (Y) = ∅. For a collection

of sets C, define F (C) = ∪A∈CF (A). Then, in Algorithm 3, we iterate on F starting from the

class C = {G(u) : u ∈ U} until there are no more nontrivial critical supersets. Since at each

step, the algorithm finds all minimal critical supersets, it will eventually list all critical sets.

The correspondence F is constructed as follows.

Algorithm 2 (Minimal Critical Supersets).

Input: A connected bipartite graph B and a self-connected set A.

Output: The set of all minimal critical supersets of A.

1. Initialize Q = {A ∪G(u) : u ∈ N(A)}.

2. For each C ∈ Q:

• Decompose the subgraph of B induced by (Cc, G−1(Cc)) into connected compo-

nents, and denote their sets of vertices by (VYl
, VUl

), for l = 1, . . . , L.

• Collect all sets C ∪
󰁖

j ∕=l VYj
, for l = 1, . . . , L, into a class P(C).

3. Return
󰁖

C∈Q P(C). 󰃈

This construction is motivated by two observations. First, since any critical superset

must be self-connected, it suffices to consider the sets in Q. Second, if for some C ∈ Q the

subgraph of B induced by (Cc, G−1(Cc)) breaks down into several disconnected components,

any minimal critical superset must contain all but one of the VYl
parts of these components

because no other configurations can be complement-connected.

The smallest CDC is computed as follows.

Algorithm 3 (The Smallest Core-Determining Class).

Input: A bipartite graph B.

Output: The smallest core-determining class.

1. Decompose B into connected components Bk = ((Yk,Uk), Ek), for k = 1, . . . , K.

2. For k = 1, . . . , K:

(i) Initialize Ck = {G(u) : u ∈ Uk} and Rk = ∅.

(ii) For each C ∈ Ck: check whether C is complement-connected. If so, add C to Rk.

(iii) Let F denote the correspondence defined by Algorithm 2. Iterate on F (·) starting
from Ck and collect all sets along the way into Rk.
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3. Return
󰁖K

k=1 Rk\Y . 󰃈

We show the validity of Algorithms 2 and 3 and discuss their computational complexity

in Appendix B. A major benefit of Algorithm 3 is that it is output-sensitive: its complexity

is proportional to the size of the smallest CDC, as opposed to the total number of Artstein’s

inequalities. In general, the size of the smallest CDC may be exponential in |Y| and |U|, but
in many examples, it scales polynomially. The computational cost of Algorithm 3 will scale

accordingly, even if the total number of Artstein inequalities becomes prohibitively large.

In contrast, existing algorithms for inequality selection are based on checking each of the

Artstein’s inequalities for redundancy which quickly becomes computationally infeasible (see

Appendix B.3 for details). Algorithm 3 can be efficiently implemented in any programming

language that has a native implementation of sets (e.g., Python or Julia). For example, with

our Julia implementation and MacBook Pro with M1 chip, 10 cores, and 32GB of RAM,

in all examples considered in Section 3.4 in which the CDC has cardinality below 1,000,

computation takes only a few seconds even in large graphs. See Appendix C.1 for details.

4.3 Comparison with Other Approaches

Besides Artstein’s inequalities, several alternative approaches exist for characterizing sharp

identified sets in models with set-valued predictions. Here, we describe these approaches

in more detail and compare them in terms of computational tractability, obtaining sharp

bounds on counterfactual quantities, and inference. Recall that P(x; θ) denotes the set of

model-implied distributions of the outcome Y , given X = x and a parameter value θ ∈ Θ.

Let U = U(x; θ) denote the partition of latent variable space given X = x and θ, defined in

Section 3.1. Denote PY |X=x = (P (Y = y |X = x))y∈Y ∈ [0, 1]|Y| and P(x;θ) = (P (U ∈ u |X =

x))u∈U ∈ [0, 1]|U|. To simplify exposition, we assume that X has finite support.

4.3.1 Artstein’s Inequalities via Core-Determining Classes

With Artstein’s inequalities, the set P(x; θ) is represented as the core of the random set

G(U, x; θ), conditional on X = x. The core is a convex compact polytope, and the smallest

CDC identifies its facets. When tractable, the Artstein’s inequalities approach provides a

convenient characterization of the sharp identified set and has several attractive features.

First, as illustrated in Section 3.4, additional restrictions on the model — such as instru-

ment exogeneity or outcome support restrictions — can easily be accommodated.

Second, it is theoretically straightforward to derive sharp bounds for any feature of θ0 or

a counterfactual quantity, expressed as φ(θ0) for some function φ : Θ → R that is known or

point-identified from the data. If Θ0 is a connected set and φ is continuous, the sharp bounds

23



on φ(θ0) are given by [mint∈Θ0 φ(t),maxt∈Θ0 φ(t)], where Θ0 is described by a collection of

moment inequalities. These optimization problems may be hard to solve in general, but when

Θ0 or φ have a special structure, the bounds are often easy to compute. For instance, in

Example 3 above, the parameter θ represents the joint distribution of potential outcomes, so

the Artstein’s inequalities are linear in θ, andΘ0 is a convex polytope. Therefore, as discussed

by Russell (2021), sharp bounds on many interesting functionals of θ can be expressed via

simple linear or convex optimization problems. Another class of counterfactuals for which

sharp bounds are easy to compute, considered by Torgovitsky (2019) and Gu et al. (2022),

is discussed in the next section.

Third, given a collection of Arstein’s inequalities, inference on θ0 or its subvectors is well-

studied (see Canay and Shaikh, 2017, for a review). A minor complication arises when the

CDC, and thus the set of moment inequalities to be tested, changes with θ. In such settings,

as discussed in Section 3, the parameter space can be partitioned into a finite number of

disjoint parts Θ =
󰁖M

m=1 Θm, according to the support of G(U,X; θ). Let φ̂m,n(θ) be a test

for H0,m : θ ∈ Θ0(P ) ∩Θm, satisfying

lim sup
n→∞

sup
P∈Pm

sup
θ∈Θ0(P )∩Θm

EP [φ̂n,m(θ)] 󰃑 α,

for some set of distributions Pm.
11 Then, the test φ̂n(θ) =

󰁓M
m=1 φ̂m,n(θ)1(θ ∈ Θm) for

H0 : θ ∈ Θ0(P ) satisfies

lim sup
n→∞

sup
P∈P

sup
θ∈Θ0(P )

EP [φ̂n(θ)] 󰃑 max
m∈{1,...,M}

lim sup
n→∞

sup
P∈Pm

sup
θ∈Θ0(P )∩Θm

EP [φ̂n,m(θ)] 󰃑 α,

where P =
󰁗M

m=1 Pm. As usual, the confidence set may be obtained by test inversion.

Existing procedures for subvector inference (e.g., Romano and Shaikh, 2008; Bugni et al.,

2017; Kaido et al., 2019) can also be modified to accommodate situations in which the set

of relevant moment inequalities depends on θ. Pursuing such modifications formally is left

for future research.

The test φ̂n(θ) described above has another notable feature: it takes into account the fact

that the set of moment equalities, corresponding to implicit-equality sets, may change with θ.

Knowing which moment inequalities are binding is useful for inference: When constructing

the test statistic, one can penalize violations in both directions, which generally leads to

more powerful tests. From this perspective, φ̂n(θ) may be preferred to a test that simply

uses all Artstein’s inequalities without specifying which of them are binding.

11The set Pm is typically characterized by requiring that self-normalized moment functions corresponding
to the m-th part of the partition are uniformly integrable over P ∈ Pm and θ ∈ Θm(P ).
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Finally, we remark that the CDC approach identifies and excludes Artstein’s inequalities

redundant in the population.12 A separate question, which arises more broadly in moment

inequality models, is whether the redundant inequalities can be used to improve inference

procedures in finite samples. Local asymptotic analysis suggests that the answer depends

on where the researcher wants to direct the power.13 Developing a finite-sample criterion for

whether to use the redundant inequalities for inference is beyond the scope of this paper,

and it is an interesting direction for future research.

4.3.2 Aumann Expectation via Support Function

Beresteanu et al. (2011) represent P(x; θ) as a conditional Aumann expectation of a suitable

random set Q(U, x; θ) ⊆ Y∗, given X = x. Letting Y ∗ denote a generic integrable selection

of Q(U, x; θ), the Aumann expectation E[Q(U, x; θ) |X = x] is defined as the closure of the

set of conditional expectations of all of its integrable selections. If the underlying probability

space is non-atomic, Aumann expectation is a convex set, so it can be characterized via the

support function, hE[Q|X=x](s) = supa∈E[Q|X=x] a
T s, defined on the unit sphere s ∈ S ⊆ R|Y∗|.

The support function satisfies hE[Q|X=x](s) = E[hQ(s)|X = x], for all s ∈ S.14 If the latter is

easy to compute, the sharp identified set can be tractably characterized by solving, for each

θ and x, a concave maximization problem in RdY∗ as

Θ0 = {θ ∈ Θ : sup
t∈B

(tTE[Y ∗ |X = x]− E[hQ(U,x;θ)(t) |X = x]) 󰃑 0, x ∈ X a.s.}. (6)

Beresteanu et al. (2011) apply the above characterization to models with interval-valued

outcomes and covariates and finite games with solution concepts other than PSNE. In such

settings, using Artstein’s inequalities generally does not lead to a tractable characterization

of the sharp identified set.

The Aumann expectation approach can be applied in the models studied above by setting

y∗(Y ) = (1{Y = y})y∈Y and Q(U,X; θ) = {y∗(Y ) : Y ∈ G(U,X; θ)}. For checking whether

a given parameter value θ belongs to the sharp identified set, it often remains computation-

ally tractable even when the smallest CDC is prohibitively large, and thus provides a viable

alternative. However, other aspects of the analysis become less straightforward. First, since

restricting the family of selections of Q(U,X; θ) may break the convexity of the Aumann

expectation, some of the additional restrictions on the model cannot be easily accommo-

dated; See Section 5 in Beresteanu et al. (2012) for a related discussion. Second, Equation

12Such inequalities are also redundant for plug-in estimation of the identified set Θ0 or bounds on any
functional φ(θ0). See Theorem 5.22 in Molchanov and Molinari (2018) for a related discussion.

13See, e.g., Example 4.1. in Canay and Shaikh (2017).
14See Theorems 3.4, 3.7, and 3.11 in Molchanov and Molinari (2018).
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(6) describes the sharp identified set with an infinite number of conditional moment inequal-

ities, for each X = x. This complicates derivations of the sharp bounds on counterfactual

quantities, as well as inference procedures (see, e.g., Andrews and Shi, 2017).

4.3.3 Mixed Matching via Linear Programs or Optimal Transport

Galichon and Henry (2011) and Russell (2021) represent P(x; θ) as the set of marginal

distributions PY |X=x on Y of all possible mixed matchings between U and Y . A mixed

matching is a distribution π(u, y, x; θ) supported on Gr(G) = {(u, y) ∈ U × Y : u ∈ G(u)}
that satisfies 󰁓

u∈G−1(y) π(y, u; x, θ) = PY |X=x(y) for all y ∈ Y ,
󰁓

y∈G(u) π(y, u; x, θ) = P(x;θ)(u) for all u ∈ U .
(7)

By Farkas’ Lemma, the existence of such π ∈ R|Y|×|U| is equivalent to

min
η∈R|Y|+|U|

󰀃
b(x; θ)Tη |A(x; θ)Tη 󰃍 0

󰀄
󰃍 0, (8)

where A(x; θ) ∈ {0, 1}|Y|×|U| × {0, 1}|Y |+|U| and b(x; θ) ∈ [0, 1]|Y|+|U| encode the constraints

in (7) and π(u, y, x; θ) 󰃍 0 for all (u, y) ∈ Gr(G) and
󰁓

(u,y)∈Gr(G) π(u, y, x; θ) = 1. So, the

sharp identified set for θ can be characterized as

Θ0 = {θ ∈ Θ : (8) holds x ∈ X -a.s.}. (9)

Galichon and Henry (2011) propose an alternative optimal transport formulation of the

problem: The goal is to transport P(x,y)(u) units of good from sources u ∈ U to PY |X=x(y)

units at terminals y ∈ Y at the minimum cost; the transportation cost is zero if y ∈ G(u)

and one otherwise. The joint distribution π(u, y; x, θ) satisfying (7) exists if and only if

such optimal transport problem has a zero-cost solution. Modern algorithms for solving this

problem have worst-case complexity of order (|Y|+ |U|)× |E(B)|; see, e.g., Orlin (2013).15

The mixed matching approach sometimes remains computationally tractable when the

smallest CDC is not, and thus provides another viable alternative. Additional modeling as-

sumptions can be accommodated, although less conveniently than with the CDC approach.

For example, consider imposing independence of the latent variables U ∈ U and an excluded

15As another alternative, Galichon and Henry (2011) propose using submodular minimization. The sharp
identified set for θ can be expressed as Θ0 = {θ ∈ Θ : minA⊆Y F(x;θ)(A) 󰃍 0, x ∈ X -a.s.}, where F(x;θ) =
P (Y ∈ A |X = x) − CG(U ;x,θ)(A). Since F(x;θ)(·) is submodular, the above minimization problem is often
feasible. For each x, ignoring the cost of evaluating CG(U,x;θ)(A), the worst-case complexity of the above
problem is |Y|6; see, e.g., Orlin (2009). This method appears to be generally slower than the optimal
transport approach, unless |U| ≫ |Y|3.
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instrument Z ∈ Z, as in Example 3 discussed in Section 3.4.16 With the CDC approach, con-

ditional Artstein’s inequalities can simply be intersected over Z. With the mixed matching

approach, to ensure that the U -marginal of π is independent of Z, additional |Z|− 1 match-

ing constraints are required for each u ∈ U . When |Z| is large or infinite, the task becomes

infeasible. In terms of bounding counterfactual quantities, the mixed matching approach is

applicable if the parameter of interest can be expressed directly in terms of π. In the context

of Example 3, Russell (2021) provides evidence the linear programs describing sharp bounds

on certain functionals of the joint distribution of potential outcomes scale favorably with |Y|
for fixed |D| and |Z|. More generally, similar to the support function approach, Equations

(8)–(9) describe the identified set by an infinite number of conditional moment inequalities,

which complicates derivations of the sharp bounds on counterfactual quantities, as well as

inference procedures.

4.3.4 Minimal Relevant Partition

A closely related approach for characterizing sharp bounds on a class of counterfactuals in

discrete-outcome models using linear programming was proposed by Tebaldi et al. (2019) and

Gu et al. (2022). In Gu et al. (2022), the model consists of the factual outcome and random

set, Y ∈ G(U,X; θ), and the counterfactual outcome and random set Y ∗ ∈ G∗(U,X; θ).

The parameter of interest is a linear functional of the counterfactual distribution of Y ∗,

conditional on X, denoted φ(PY ∗|X). The counterfactual set of predictions G
∗ is assumed to

be “coarser” than the factual set G in the following sense: There must exist a finite partition

{u∗
1, . . . , u

∗
L} of the latent variable space U such that knowing the probabilities of “cells” u∗

l ,

conditional on X = x, suffices to bound φ(PY ∗|X). Following Tebaldi et al. (2019), such a

partition is called the Minimal Relevant Partition (MRP). Similarly to the mixed matching

approach, the authors show that Y ∈ G(U,X; θ), a.s., and Y ∗ ∈ G∗(U,X; θ), a.s., hold jointly

(with all random quantities defined on a common probability space) if and only if there exists

a joint mixed matching πx(y, y
∗, u∗

l ) consistent with the model. That is, πx(y, y
∗, u∗

l ) is the

probability that a factual outcome y is chosen from the set G(u∗
l , x; θ), a counterfactual

outcome y∗ is chosen from the set G∗(u∗
l , x; θ), and u ∈ u∗

l , conditional on X = x. Such

a structure enables the authors to express sharp bounds on the counterfactual φ(PY ∗|X∗)

via two linear programs. The choice vector in these programs, (πx(y, y
∗, u∗

l ))y,y∗∈Y,x∈X ,l󰃑L,

is of dimension d = |X ||Y|2L, and there are p = |X |(|Y| + 2) constraints to ensure that

πx(y, y
∗, u∗

l ) matches the observed conditional distribution of the outcomes and represents a

valid probability distribution and q = |X ||Y|2L non-negativity constraints.17

16To match the notation in this section and Example 3, let U = Y ∗, X = ∅, and Y = (Y,D).
17See Section 2.2 in Gu et al. (2022)
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The CDC approach can also be applied in this framework, and it sometimes leads to

simpler linear programs. The idea is to treat the probabilities of “cells” in the MRP, denoted

µ(u∗
l , x), as unknown parameters. Such “cells” are typically finer than the partition U(x; θ) =

{u1, . . . , uk} described in Section 3.1, so each µ(uk, x) is a sum of several µ(u∗
l , x). Artstein’s

inequalities provide linear inequality constraints on µ(uk, x) of the form P (Y ∈ A |X = x) 󰃍
󰁓

k∈G−(A) µ(uk, x), for all A ∈ C∗(x). Assuming, for example, that C∗(x) does not change

with x, this approach leads to a linear program with the choice vector (µ(u∗
l , x))x∈X ,l󰃑L of

dimension d = |X |L, p = |X |K equality constraints linking the MRP with U(x; θ), and
q = |X |(|C∗(x)| + L) inequality constraints including the Artstein’s inequalities and non-

negativity constraints. Then, if |C∗(x)| is smaller than |Y|2, the resulting linear program is

easier than the one described in the preceding paragraph. In particular, this is the case in

many entry games in Example 1 and a dynamic entry model in Example 2.

4.3.5 Final Remarks

To summarize the above discussion, when the smallest CDC is manageable, Artstein’s in-

equalities approach provides a simple and universally applicable method for deriving sharp

identified sets for both structural parameters and counterfactuals. It is especially useful in

settings with excluded exogenous covariates that have rich support and are independent of

the unobservables. When the smallest CDC is very large, other methods discussed above

provide viable alternatives.

5 Extensions: Infinite Support, Dominated Selections

In this section, we extend the results of Section 3 to models in which the outcome variable

has infinite support, possibly with some additional restrictions. Such settings require a more

nuanced formal setup, which we now intoduce.

Let Q be a sigma-finite measure on Y and suppose that in addition to Y ∈ G(U,X; θ),

almost surely, the researcher wishes to impose that the distribution of Y is absolutely con-

tinuous with respect to Q. For example, choosing to Q to be a Lebesgue measure im-

poses that Y has a continuous distribution, and restricting the support of Q corresponds

to restricting the support of Y . As in Section 3.1, we shall fix x ∈ X and θ ∈ Θ and

work with the random set G(U, x; θ), conditional on X = x. Notice PY ≪ Q implies

PY |X=x ≪ Q, for almost all x ∈ X . For simplicity, we denote G ≡ G(U, x; θ), P ≡ PU |X=x,θ,

and CG(A) = P (G(U, x; θ) ⊆ A |X = x). We can then view G as a closed random set defined

on the probability space (U ,F , P ), where F is the Borel sigma-field on U , and taking values
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in (Y ,B). Recall that C denotes the class of all closed subsets of Y and let MQ denote the

set of all probability distributions on (Y ,B) absolutely continuous with respect to Q.

For any class of sets C ⊆ C, define

MQ(C) = {µ ∈ MQ : µ(A) 󰃑 CG(A), for all A ∈ C}.

Our object of interest will be the set of distributions of all selections of G that are absolutely

continuous with respect to Q, or, in the above notation,

MQ(C) = Core(G) ∩MQ.

We assume that Q is chosen to ensure that MQ(C) ∕= ∅, i.e, for any B ∈ C with Q(B) = 0,

CG(B) = 0. By analogy with Definition 2.1, we introduce the following notion.

Definition 5.1 (Q-CDC). A class C ⊆ C is Q-core-determining if MQ(C) = MQ(C).

Generally, MQ(C) ⊆ Core(G), although in many settings, the two sets are equal. The

following example illustrates.

Example 4 (Dominated Selections). Let U = [0, 1]2 and Y = [0, 1] both be endowed with

Borel sigma-fields. Let U = (U1, U2) be a pair of random variables with a joint distribution

P supported on S ⊆ S0 = {(u1, u2) ∈ [0, 1]2 : u1 󰃑 u2}. Consider a random closed set

G : [0, 1]2 󰃃 [0, 1] defined by G(U) = [U1, U2].

Depending on P , the random set G may have only continuous selections or a full menu

including continuous, discrete, and mixed selections. For example, if P is any continuous

distribution will full support S0, the random set G can be arbitrarily narrow with positive

probability, so it only has continuous selections. That is, Core(G) = Mλ(C) with λ being the

Lebesgue measure. Alternatively, suppose U2 = U1+1/K, P -almost-surely, for some K ∈ N.
Then, for example, Y = U1 is a continuous selection of G, and Y ′ =

󰁓K−1
k=0

k+1
K

1(U1 ∈
󰀅
k
K
, k+1

K

󰀄
) is a discrete selection of G. In this case, taking Q to be the Lebesgue measure on

[0,1] will meaningfully restrict the set of selections. 󰃈

Given the measures Q and P , each set A ∈ B can be associated with an equivalence

class [A] with A′ ∼ A if A = A′, Q-a.s., and G−(A) = G−(A′), P -a.s.. For the purpose of

describing the core, all sets A ∈ [A] are equivalent. Therefore, we define the critical and

implicit equality sets as follows.

Definition 5.2 (Critical and Implicit-Equality Sets). A set A ∈ C is critical if MQ(C\[A]) ∕=
MQ(C). A set A ∈ C\{Y ,∅} is an implicit equality set if µ(A) = CG(A) for all µ ∈ MQ(C).
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Since the containment functional is uniquely defined by the family of closed sets C, it

is natural to think of a representative closed set A ∈ C in each equivalence class [A]. In

what follows, we write A instead of [A] and speak of sets instead of equivalence classes, for

simplicity. For any sets A,B ∈ B, we say that “A = B, Q-a.s.,” if Q((A∩Bc)∪(B∩Ac)) = 0.

For any sets A,B ∈ F , define “A = B, P -a.s” similarly.

The results in Section 3 relied on connectivity of the bipartite graph B or its subgraphs.

A direct analog of the bipartite graph B in the present setting is the graph of G:

Gr(G) = {(u, y) ∈ U × Y : y ∈ G(u)}.

However, requiring that this set be connected is not sufficient for our purposes, because the

connections have to be “detectable” by the measures Q and P . Recall that the lower and

upper pre-images of G are defined as

G−(A) = {u ∈ U : G(u) ⊆ A}; G−1(A) = {u ∈ U : G(u) ∩ A ∕= ∅}

and G−(A) ⊆ G−1(A), for each A ⊆ Y . Further, let

N(A) = G−1(A)\G−(A) = {u ∈ U : G(u) ∩ A ∕= ∅, G(u) ∩ Ac ∕= ∅}

be the set vertices u ∈ U that connect A with the rest of the graph Gr(G). We define

connected graphs as follows.

Definition 5.3 (Connected Graph of a Random Set). A random set G has a connected

graph if (i) Q(G(u)) > 0, for P -almost all u ∈ U ; For any A ∈ C\Y with Q(A) > 0: (ii)

P (N(A)) > 0, and (iii) For almost all u ∈ N(A), Q(G(u) ∩ A) > 0 and Q(G(u) ∩ Ac) > 0.

In the finite setting studied in Section 3, connectivity amounts to N(A) ∕= ∅, for all A,

while G(u) ∕= ∅, for all u ∈ U , and G(u) ∩ A ∕= ∅ and G(u) ∩ Ac ∕= ∅, for all u ∈ N(A),

hold by definition. Assumptions (i)–(iii) above additionally require that the respective sets

are “detectable” by the measure Q. If P (N(A)) = 0, for some A, the outcome space can be

partitioned as Y = Y1∪Y2, with Y1 = A and Y2 = Ac, so that G−1(Y1)∩G−1(Y2) = ∅, P -a.s..

That is, the correspondence G “breaks” into two P -a.s. disjoint components, which can be

analyzed separately. In complete models, G is singleton-valued, so Q(G(u)) = 0 is possible

even if G(u) ∕= ∅, and G−1(A) = G−(A) and N(A) = ∅, for all A ⊆ Y , so the set Gr(G)

breaks into a potentially infinite number of disjoint pieces. The following example illustrates.

Example 4 (Continued. Graph-Connected Random Sets). Assume the same setup as above.

Let Q be the Lebesgue measure. Let P be any continuous distribution supported on S0. For

30



P -almost all u, the set G(u) has positive length, and so Q(G(u)) > 0. Consider, for example,

a set A = [a1, a2] for some 0 < a1 < a2 < 1. Then, N(A) = {(u1, u2) ∈ S : u1 ∈ A, u2 >

a2}∪{(u1, u2) ∈ S : u1 < a1, u2 ∈ A}. For P -almost all u ∈ N(A), the segments G(u)∩A and

G(u)∩Ac have positive length and thusQ(G(u)∩A) > 0 andQ(G(u)∩Ac) > 0. Therefore, the

graph of G is connected in the sense of Definition 5.3. Alternatively, suppose P is supported

on the union of sets S1 = {(u1, u2) ∈ S0 : u2 󰃑 1/2} and S2 = {(u1, u2) ∈ S0 : u1 󰃍 1/2}.
Then, G−1([0, 1/2]) = S1 and G−1([1/2, 1]) = S2. Then, the graph of random set G is not

connected in the sense of Definition 5.3. In this case, the restrictions G1 : S1 → [0, 1/2] and

G2 : S2 → [1/2, 1] can be considered separately. 󰃈

Finally, the notions of self- and complement-connected sets extend as follows.

Definition 5.4 (Self- and Complement-Connected Sets). Let G be a random set with a

connected graph, in the sense of Definition 5.3. A subset A ∈ C is self-connected if there do

not exist A1, A2 satisfying A = A1 ∪ A2 and A1 ∩ A2 = ∅, Q-a.s., and G−(A) = G−(A1) ∪
G−(A2), P -a.s.. A subset A ∈ C is complement-connected if there do not exist A1, A2

satisfying Ac = Ac
1 ∪ Ac

2 and Ac
1 ∩ Ac

2 = ∅, Q-a.s., and G−1(Ac
1) ∩G−1(Ac

2) = ∅, P -a.s..

5.1 The Smallest Core-Determining Class

We are now ready to state the main results of this section, which are direct extensions of

Lemmas 1 and 2 and Theorem 1.

Lemma 3 (Critical Sets). Let G : (U ,F , P ) 󰃃 (Y ,B, Q) be a random closed set with a

connected graph. A subset A ∈ C is critical if and only if it is self- and complement-connected.

Lemma 4 (Implicit-Equality Sets). Let G : (U ,F , P ) 󰃃 (Y ,B, Q) be a random closed set.

Suppose there is a countable partition Y =
󰁖

l󰃍1 Yl such that Yi ∩ Yj = ∅, Q-a.s., and

G−1(Yi) ∩ G−1(Yj) = ∅, P -a.s., for all i ∕= j, and such partition cannot be further refined.

A subset A ⊆ Y is an implicit-equality set if and only if A =
󰁖

l∈LA
Yl for some LA ⊆ N.

Theorem 2 (Smallest CDC). Let G : (U ,F , P ) 󰃃 (Y ,B, Q) be a random closed set.

1. If G has connected graph, the class C∗ of all critical sets, characterized in Lemma 3, is

the smallest CDC.

2. If the outcome space Y can be partitioned as in Lemma 4, and C∗
l denotes the class of

all critical sets in Yl, characterized in Lemma 3, then C∗ =
󰁖

l󰃍1 C∗
l ∪Yl is the smallest

CDC, up to removing a single arbitrary Yl.
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Corollary 1.1 and the subsequent discussion also apply in continuous-outcome settings.

When the support of G(U, x; θ), conditional on X = x, is infinite, the smallest CDC, C∗(x, θ)

contains an infinite number of sets, for each x. This fact implies that using all of the

modeling implication for estimation and inference on θ0 may be challenging.18 On the other

hand, certain functionals of the form φ(θ0) ∈ R, may admit relatively simple sharp bounds.

In such cases, Theorem 2 can be used to “guess” the sharp bounds, but to prove sharpness,

it is typically easier to explicitly construct a data-generating distribution that attains the

bounds. The following examples illustrate.

5.2 Examples

The first example studies a model with interval-valued data. For related results, see Beresteanu

et al. (2012), Section 2.3 in Molinari (2020), and Manski (1994).

Example 5 (Interval Data). Let Y ∗ ∈ Y denote a continuous outcome variable (e.g., income)

and X ∈ X denote covariates (e.g., socio-economic characteristics). Suppose the researcher

does not observe Y ∗ directly but observes continuous random variables YL, YU ∈ Y such that

Y ∗ ∈ G(YL, YU) = [YL, YU ] (e.g., income bracket). For simplicity, suppose X is discrete, and

Y = [y, y] for some known y < y. Also, suppose that P (κ(x) 󰃑 YU − YL 󰃑 κ(x) |X = x) = 1

for some known functions κ(x) and κ(x). The basic parameter of interest is θ0 = PY ∗X .

Consider the random set G(YL, YU), conditional on X = x. Since Y ∗ is continuous, we

take Q equal to the Lebesgue measure on Y . Since the conditions of Definition 5.3 are

satisfied, the random set G is graph-connected, and there are no implicit-equality sets. In

turn, the critical sets can be determined as follows. The support of G is the set of all closed

intervals in [y, y]. The only sets that satisfy A = G(G−(A)), i.e., can be expressed as unions

of elements of the support of G, are finite or countable unions of disjoint intervals included

in [y, y], where each interval has a length of at least κ(x). Consider a union of the form

A = A1 ∪ A2 = [a1, b1] ∪ [a2, b2] with bj − aj 󰃍 κ(x) and a2 > b1. Then, A1 ∩ A2 = ∅ and

G−(A) = G−(A1)∪G−(A2), P -a.s, meaning that A is not self-connected. A similar argument

applies to any other collection of disjoint intervals, which means that all critical sets must

be contiguous intervals. Next, consider an interval A = [a, b] with y < a < b < y and

b− a > κ(x). Then, the sets A1 = [y, b] and A2 = [a, y] satisfy Ac
1 ∪ Ac

2 = Ac, Ac
1 ∩ Ac

2 = ∅,

andG−1(Ac
1)∩G−1(Ac

2) = ∅, P -a.s., meaning that A is not complement-connected. Note that

intervals of the form [y, b] and [a, y] are complement-connected. Thus, the sharp identified

set for θ0 is completely characterized by inequalities of the form P (Y ∗ ∈ A |X = x) 󰃍
18However, e.g., Mourifié and Wan (2017) show that the local average treatment effect assumptions in a

model with continuous outcomes can be tested using the procedure of Chernozhukov et al. (2013).
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P ([YL, YU ] ⊆ A |X = x) for all sets A in the class

C∗(x) = {[y, a], [a, y] : y + κ(x) 󰃑 a 󰃑 y − κ(x)} ∪ {[a, b] : κ(x) 󰃑 b− a 󰃑 κ(x)},

for all x ∈ X . If κ or κ do not depend on x or its subvector, the corresponding inequalities

can be intersected. Importantly, Theorem 2 implies that each of the above inequalities is

also necessary to guarantee sharpness.

Next, suppose the parameter of interest is the conditional CDF φ(θ0) = FY ∗|X=x(·). The
sharp identified set for φ(θ0) is contained in the “tube” of non-decreasing functions satisfying

FY ∗|X=x(y) ∈

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

[0, FYL|X=x(κ(x))] y ∈ [0,κ(x))

[FYU |X=x(y), FYL|X=x(y)] y ∈ [y + κ(x), y − κ(x)]

[FYU |X=x(y − κ(x)), 1] y ∈ (y − κ(x), y].

The upper and lower bounds correspond to valid CDF’s and are sharp. However, not all

CDFs inside the tube are included in the sharp identified set, because valid candidates must

also satisfy

FY ∗|X=x(b)− FY ∗|X=x(a) 󰃍 P (YL 󰃍 a, YU 󰃑 b |X = x) (10)

for any a, b such that κ(x) 󰃑 b−a 󰃑 κ(x). This rules out CDFs that increase “too little” over

any such interval. Importantly, Theorem 2 implies that no other restrictions are required.

Finally, suppose the parameter of interest is the difference between conditional quantiles

φ(θ0)= qY ∗|X=x(τ1)− qY ∗|X=x(τ2), for some τ1 > τ2. Each of the quantiles is sharply bounded

by the corresponding quantiles of YL and YU , which may suggest that

φ(θ0) ∈
󰀅
max{0, qYL|X=x(τ1)− qYU |X=x(τ2)}, qYU |X=x(τ1)− qYL|X=x(τ2)

󰀆
.

However, the upper bound may not be sharp due to (10) being violated at a = qY ∗|X=x(τ2),

b = qY ∗|X=x(τ1). Instead, it can be verified that the sharp upper bound is

max{b− a |a 󰃍 qYL|X=x(τ2), b 󰃑 qYU |X=x(τ1), τ1 − τ2 󰃍 P (YL 󰃍 a, YU 󰃑 b|X = x)}.

Bounds on other functionals can be obtained similarly. 󰃈

Our final example is a model of ascending auctions studied by Haile and Tamer (2003),

Aradillas-López et al. (2013), Chesher and Rosen (2017), and Molinari (2020).

Example 6 (Ascending Auctions). Consider an ascending auction with N bidders. Let

Vj ∈ [0, v] and Bj ∈ [0, v] denote the valuation and bid of player j, and Vj:N and Bj:N denote
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the corresponding j-th smallest valuation and bid. Suppose the bidders are symmetric in the

sense that (V1, . . . , VN) are exchangeable. Let F ∈ F denote the joint distribution of ordered

valuations V = (V1:N , . . . , VN :N) supported on S = {v ∈ [0, v]N : v1 󰃑 · · · 󰃑 vN}, where
the class F summarizes the assumptions on the information structure. Suppose there is no

reserve price and minimal bid increment. Suppose the researcher observes the two largest

bids (BN−1:N , BN :N) and wants to learn about features of F . Following Haile and Tamer

(2003), suppose that bidders (i) do not bid above their valuation and (ii) do not let their

opponents win at a price they would be willing to pay. Then, (i) implies Bj:N 󰃑 Vj:N for all

j, and (ii) implies VN−1:N 󰃑 BN :N . Thus, the model produces a set-valued prediction for the

bids, given valuations, G(V ;F ) = [0, VN−1:N ]× [VN−1:N , VN ] ∩ S. As long as F is supported

on S, the support of G(V ;F ) does not depend on F .

It can be verified that the random set G(V ;F ) has connected graph, so by Lemma 4,

there are no implicit-equality sets. In turn, the class of all critical sets is vast. In particular,

it includes all lower sets A1 = {(v1, v2) ∈ [0, v̄]2 : v1 󰃑 κ(v2)}, for some weakly decreasing

function κ : [0, v̄] → [0, v̄]; all sets of the form A2 = {(v1, v2) : v1 󰃑 a, v2 ∈ [b, c]}, for
some a, b, c ∈ [0, v̄] with b 󰃑 c; all sets of the form A1 ∩ A2; and all countable unions of

the resulting family of sets. As a result, the sharp identified set for F is intractable in

practice. However, certain functionals of F admit tractable bounds. Aradillas-López et al.

(2013) show that in ascending auctions, if the transaction price equals the largest of the

reserve price and second-highest valuation, the expected profit and bidders’ surplus under

counterfactual reserve prices depend only on the marginal distribution of the two largest

valuations: φ(F ) = (FN−1:N , FN :N). The sharp identified set for φ(F ) is given by

Φ0 = {φ(F ) : F ∈ F , P ((BN−1:N , BN :N) ∈ A) 󰃍 PF ([0, VN−1:N ]× [VN−1:N , VN ] ⊆ A) ∀A}.

To make progress, Aradillas-López et al. (2013) assume that the valuations are positively

dependent in the sense that the probability P (Vi 󰃑 v |#{j ∕= i : Vj 󰃑 v} = k) is non-

decreasing in k for each i = 1, . . . , N . Under the above assumption, the authors show

that FN :N ∈ [FN−1:N ,φN−1:N(FN−1:N)
N ], where φN−1:N : [0, 1] → [0, 1] is a known strictly

increasing function that maps the distribution of the second-largest order statistic of an

i.i.d. sample of size N to the parent distribution. With this assumption, the set Φ0 can

be characterized more concretely. The Artstein’s inequality corresponding to the set A =

S ∩ [0, v] × [0, v] implies FN−1:N(v) 󰃑 GN−1:N(v); the set A = S ∩ [0, v] × [v, v] implies

FN−1:N(v) 󰃍 GN :N(v); and the set A = S ∩ [0, v] × [0, v] implies FN :N(v) 󰃑 GN :N(v).
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Combining these inequalities with the bounds on FN :N yields

GN :N(v) 󰃑 FN−1:N(v) 󰃑 GN−1:N(v);

φN−1:N(GN :N(v))
N 󰃑 FN :N(v) 󰃑 GN :N(v).

By constructing suitable joint distributions F ∈ F , it is possible to show that both upper

bounds and both lower bounds can be attained simultaneously, so the bounds are sharp.

As in the preceding example, although the bounds on FN−1:N are sharp, the corresponding

“tube” of functions includes many CDFs that do not belong to the sharp identified set.

Specifically, the set A = S ∩ [a, v] × [0, b] for b > a corresponds to the Artstein’s inequality

FN−1:N(b) − FN−1:N(a) 󰃍 P (BN−1:N 󰃍 a,BN :N 󰃑 b), which rules out CDFs that do not

increase sufficiently between a and b. This fact has immediate implications for studying,

e.g., optimal reserve prices. The details are left for future research. 󰃈

6 The Importance of Selecting Inequalities

In this section, we provide evidence that selecting Artstein’s inequalities informally may lead

to a substantial loss of identifying information.

Dynamic Entry In the first simulation exercise, we revisit the dynamic entry model of

Berry and Compiani (2020), which is our Example 2. In this setting, even with only a few

time periods, the total number of Artstein’s inequalities is prohibitively large; see Table 1b.

To this end, the authors suggest using inequalities that should intuitively be informative

about the structural parameters. Specifically, they consider the events: “the firm enters at

least once,” “the firm exits at least once,” and “the number of firms in the market does not

change for K consecutive periods.” Below, we compare the resulting identified sets with the

sharp identified set for T = 5 made feasible by computing the smallest CDC.

The true parameter values are set to π̄ = 0.5, γ = 1.5, and ρ = 0.75, and the sample

size is 10,000. Further details of the simulation design are provided in Appendix C. Figure

5 presents the results. The grey shaded regions represent projections of the sharp identified

set in the model with T = 2; the orange regions combine the inequalities for T = 2 with the

hand-picked inequalities of Berry and Compiani (2020) for T = 5; and the light-blue regions

correspond to the sharp identified set with T = 5. Evidently, the intuitive inequalities do not

come close to using all of the identifying information in the model with T = 5. In numerical

terms, the orange (“intuitive”) identified set for (π, γ, ρ) is roughly 26% smaller than the

grey one, while the blue (sharp) identified set is 97% smaller.
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Figure 5: Projections of identified sets in the dynamic entry model from Example 2.

Static Entry In the second simulation exercise, we aim to quantify how much identifying

information would be lost if the researcher used alternative sets of inequalities instead of the

smallest CDC. We revisit the market entry model from Example 1 with N = 3 players and

strategic complementarities, δj > 0 for j ∈ {1, 2, 3}. In this setting, there are 254 nontrivial

Artstein’s inequalities in total, while the smallest CDC contains only 14 inequalities. A

comprehensive experiment would require trying all sets of 14 inequalities out of 254 (≈ 1022

options), which is computationally infeasible. As an approximation, we sample 14 out of

254 inequalities at random 15,000 times and compute the corresponding identified sets us-

ing a fixed grid of points. For each set of inequalities, we compute the relative size of the

sharp identified set to the simulated one as the ratio of the counts of grid points that satisfy

the respective inequalities. We simulate 5,000 observations with parameters αj = −0.4 and

δj = 0.4 and unobservables εj distributed i.i.d. N(0, 1), for j ∈ {1, 2, 3}. Within the regions

of multiplicity, we select asymmetric equilibria (e.g., (1, 1, 0) instead of (0, 0, 0)) with proba-

bility 0.9 to ensure that each outcome is realized with a non-trivial probability. The result-

ing distribution over {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} is

(0.08, 0.08, 0.08, 0.25, 0.25, 0.09, 0.09, 0.08). The grid for (α, δ) is [−0.5,−0.2]× [0.3, 0.5] with

50 values along each dimension.

Figure 6 presents the results. The left panel depicts the sharp identified set, and the right

panel shows the distribution of the relative size of the sharp identified set across simulations.

The median relative size of the sharp identified set to the simulated ones is 38%, meaning

that in half of the simulations at least 62% of the identifying information is lost. This

result suggests that the smallest CDC is a very specific collection of inequalities and using

alternative sets of inequalities is likely to result in a substantial loss of identifying information.
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Figure 6: Size of the sharp identified set relative to identified sets constructed with the same
number of inequalities in a market entry model with complementarities in Example 1.

7 Conclusion

Artstein’s inequalities provide a convenient way to describe sharp identified sets in a large

class of partially-identified econometric models. However, the total number of inequalities

is often prohibitively large in practice, while many of them are redundant in the sense that

excluding them from the analysis is without loss of identifying information. In this paper,

we derived the smallest possible set of inequalities that suffices for sharpness, provided an

efficient algorithm to compute it, and used the proposed approach to obtain tractable char-

acterizations of the sharp identified sets in several well-studied settings. The results apply far

beyond the examples considered in the paper. Determining which moment inequalities are

more informative for inference in finite samples is an important question for future research.
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Aradillas-López, A. (2020). The econometrics of static games. Annual Review of Economics,

12(1):135–165.

37
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A Proofs from the Main Text

Proof of Lemma 1 The “Only if” direction follows from the arguments in Section 3.2:

if a set A is not self-connected, the first argument applies; if A is not comlement-connected,

the second argument applies. For the “If” direction, let ν ∈ M with ν(y) > 0 for all

y ∈ Y . Let A be a set that is both self-connected and complement connected. Define a map

πA : U × 2Y → [0, 1] via

πA(u;B) =
ν(G(u) ∩B ∩ Ac)

ν(G(u) ∩ Ac)
1(u ∈ N(A)) +

ν(G(u) ∩B)

ν(G(u))
1(u /∈ N(A))

Note that u ∈ N(A) ensures G(u)∩Ac ∕= ∅. By standard properties of measurable functions,

the map u 󰀁→ πA(u;B) is measurable, for each B. By construction, for each fixed u, πA(u; ·)
is a probability distribution on Y supported on G(u). That is, πA is a Markov kernel. Note

that πA(u,B) > 0 if and only if u ∈ G−(B) ∪ N(B), and πA(u,B) = 1 for u ∈ G−(B).

Averaging over u yields a probability distribution µA(B) =
󰁓

u∈U πA(u;B)P (u) satisfying

µA(B) = CG(B) +
󰁛

u∈N(B)∩N(A)

ν(G(u) ∩B ∩ Ac)

ν(G(u) ∩ Ac)
P (u) +

󰁛

u∈N(B)∩N(A)c

ν(G(u) ∩B)

ν(G(u))
P (u).

(A.1)

In particular, µA(A) = CG(A). We will show that for any B ∕= A, the second or the third

summand (or both) in (A.1) must be positive, so µA(B) > CG(B).

Since G is connected, it must be that N(B) ∕= ∅, for all B. If N(B) ∩ N(A)c ∕= ∅, the

last summand in (A.1) is strictly positive and the conclusion follows. It remains to consider

N(B) ⊆ N(A). There are three possible cases:

1. A ∩B ∕= ∅ and A ∩Bc ∕= ∅. Since N(B) ⊆ N(A), in particular, G−(A) ∩N(B) = ∅.

That is, all u such that G(u) ⊆ A satisfy either G(u) ∩ B = ∅ (i.e., G(u) ⊆ Bc) or

G(u) ⊆ B. Thus, the sets A1 = A∩B, A2 = A∩Bc satisfy A1∪A2 = A, A1∩A2 = ∅,

and G−(A1)∪G−(A2) = G−(A), which contradicts the assumed self-connectivity of A.

42



2. A∩B = ∅, or A ⊆ Bc. Then, B∩Ac = B, so the second summand in (A.1) is positive.

3. A ∩ Bc = ∅, or A ⊆ B. Since N(B) ⊆ N(A), B is connected to the rest of the

graph only through A. That is, there does not exist u such that G(u) ∩ (B ∩Ac) ∕= ∅
and G(u) ∩ Bc ∕= ∅. So, for all u such that G(u) ∩ (B ∩ Ac) ∕= ∅ it must be that

G(u)∩Bc = ∅, and for all u such that G(u)∩Bc ∕= ∅, it must be that G(u)∩(B∩Ac) =

∅. Thus, the sets Ac
1 = B ∩ Ac, Ac

2 = Bc ∩ Ac = Bc satisfy Ac = Ac
1 ∪ Ac

2 and

G−1(Ac
1) ∪G−1(Ac

2) = G−1(Ac), which contradicts the complement-connectivity of A.

Therefore, we have constructed a probability measure µA ∈ Core(G) satisfying µA(A) =

CG(A) and µA(Ã) > CG(Ã) for all Ã ∕= A. By continuity, there exists a probability measure

µ′ such that µ′(A) = CG(A) − 󰂃 for some small 󰂃 > 0, while µ′(Ã) > CG(Ã) for all Ã ∕=
A, Ã ∈ C. Such µ′ satisfies µ′ /∈ M(C), and µ′ ∈ M(C\A). Therefore, A must be critical. 󰃈

Proof of Lemma 2 For the “If” direction, let Y be an arbitrary selection of G with a

distribution µ. Since for each l ∈ {1, . . . , L}, Y ∈ Yl holds if and only if U ∈ G−(Yl), it

must be that µ(Yl) = P (U ∈ G−(Yl)) = CG(Yl). By additivity of probability measures, the

corresponding equality holds for any union of sets Yl.

For the “Only if” direction, let A be any set other than a union of some Yl. By assump-

tion, each subgraph Bl induced by (Yl, G
−1(Yl)) is connected, so it must be that N(A) ∕= ∅.

Let ν ∈ M with ν(y) > 0 for all y ∈ Y and define a Markov kernel π0 : U × 2Y → [0, 1] as

π0(u;A) = ν(A∩G(u))/ν(G(u)). For each u ∈ U , π0(u; ·) is a probability measure supported

on G(u) satisfying π0(u;A) > 0 if and only if u ∈ G−(A) ∪ N(A), with π0(u;A) = 1, for

u ∈ G−(A). Averaging over u yields a probability distribution

µ0(A) =
󰁛

u∈U

π0(u;A)P (u) = CG(A) +
󰁛

u∈N(A)

π0(u;A)P (u).

Since N(A) ∕= ∅, π0(u;A) > 0, and P (u) > 0 for all u ∈ N(A), it follows that µ0(A) >

CG(A), so such A cannot be an implicit-equality set. 󰃈

Proof of Theorem 1 Let ⊆ and ⊂ denote the weak and strict inclusions correspondingly.

First, suppose B is connected. Since any core-determining class must contain all critical sets,

the goal is to show that the class of all critical sets is itself core-determining. To this end, it

suffices to show that removing any non-critical set A cannot “make” any other non-critical

set A′ critical, i.e., M(C\A) = M(C\A′) = M(C) necessarily implies M(C\A\A′) = M(C).

For each set of vertices S ⊆ V (B), let N (S) denote the set of all edges adjacent to some
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vertex in S. To each set A ⊆ Y , associate a set of edges adjacent to Ac or G−(A), that is,

EA ≡ N (Ac ∪G−(A)) = {(u, y) ∈ E(B) : y ∈ Ac or u ∈ G−(A)}.

If A is non-critical, by Lemma 1, either (i) A = A1 ∪ A2 with A1 ∩ A2 = ∅ and G−(A) =

G−(A1)∪G−(A2) or (ii) A
c = Ac

1∪Ac
2 with Ac

1∩Ac
2 = ∅ and G−1(Ac) = G−1(Ac

1)∪G−1(Ac
2).

In either case, it can be verified that EA ⊂ EAj
for j = 1, 2. For example, if (i) holds,

EA = N (G−(A1)) ∪ N (G−(A2)) ∪ N (Ac), while EA1 = N (G−(A1)) ∪ N (A2) ∪ N (Ac). By

construction, N (G−(A2)) ⊆ N (A2). Since the graph B is connected, there must be an edge

between A2 and U\G−(A). That is, N (G−(A2)) ⊂ N (A2) and therefore EA ⊂ EA1 . The

inclusion EA ⊂ EA2 is symmetric, and case (ii) can be considered similarly. Since in either

case, removing A is without loss as long as A1 or A2 are present, the fact that EA ⊂ EA1

and EA ⊂ EA2 implies that removing a non-critical set A cannot make any other set A′ ∕= A

critical. Otherwise, we would have EA ⊂ EA′ and EA′ ⊂ EA, which is a contradiction.

Next, let Y =
󰁖L

l=1 Yl with Yi∩Yj = ∅ for i ∕= j, denote the finest partition of the outcome

space with the property G−1(Yi)∩G−1(Yj) = ∅. Then, any set of the form A = ∪L
l=1Al with

Al ⊆ Yl satisfies G
−(A) =

󰁖L
l=1 G

−(Al), so it is redundant given (Al)
L
l=1 (see also Theorem

2.33 in Molchanov and Molinari, 2018). Also, since
󰁓L

l=1 µ(YL) = 1 for any µ ∈ Core(G),

any one (and only one) of the sets Yl can be omitted from the CDC. Combining these facts

with the above argument applied to each connected component Bl of B yields the result. 󰃈

Proof of Lemma 3 Let ν ∈ MQ with dν/dQ > 0. Let A be a set that is both self-

connected and complement connected. Define a map πA : U × B → [0, 1] as

πA(u;B) =
ν(G(u) ∩B ∩ Ac)

ν(G(u) ∩ Ac)
1(u ∈ N(A)) +

ν(G(u) ∩B)

ν(G(u))
1(u /∈ N(A)).

Since G has a connected graph, ν(G(u)) > 0, for almost all u ∈ U , and ν(G(u) ∩ Ac) > 0,

for almost all u ∈ N(A). By the Robbins’ Theorem (Theorem 1.5.16 in Molchanov, 2005)

and standard properties of measurable functions, the map u 󰀁→ πA(u,B) is measurable for

each B ∈ B. By construction, for each fixed u, πA(u; ·) is a probability distribution on Y
supported on G(u). That is, πA is a Markov kernel. Note that πA(u;B) > 0 if and only

if u ∈ G−(B) ∪ N(B), and πA(u;B) = 1, for any u ∈ G−(B). Averaging over u yields a

probability measure µA(B) =
󰁕
U πA(u;B)dP (u), satisfying

µA(B) = CG(B) +

󰁝

N(B)∩N(A)

ν(G(u) ∩B ∩ Ac)

ν(G(u) ∩ Ac)
dP (u) +

󰁝

N(B)∩N(A)c

ν(G(u) ∩B)

ν(G(u))
dP (u).

(A.2)

In particular, µA(A) = CG(A) holds by construction. We will show that, for any B ∕= A with
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Q(B) > 0, at least one of the remaining summands in (A.2) must be positive, so µA(B) >

CG(B). The inequalities for B with Q(B) = 0 hold trivially provided that MQ(C) ∕= ∅, so

such sets need not be considered.

An integral of the form
󰁕
S
f(ω)dP (ω), where f(ω) ≥ 0, is positive if and only if P ({ω :

f(ω) > 0} ∩ S) > 0. For each B ⊆ Y , the set N(B) contains “vertices” u ∈ U that connect

B with the rest of the graph Gr(G). Since G has connected graph, P (N(B)) > 0, for all B

with Q(B) > 0. If P (N(B)∩N(A)c) > 0, the last summand in (A.1) is strictly positive and

the conclusion follows. The rest of the argument proceeds exactly as in the proof of Lemma

1, with qualifiers P -a.s. and Q-a.s. added when referring to set operations in U and Y . 󰃈

Proof of Lemma 4 The proof is nearly identical to that of Lemma 2 with the following

modifications. The measure ν ∈ MQ must satisfy dν/dQ > 0 and the measurability of

u 󰀁→ π0(u;A) follows from the Robbins theorem, as in the proof of Lemma 3. The qualifiers

P -a.s. and Q-a.s. are added when referring to set operations in U and Y . 󰃈

Proof of Theorem 2 The proof is nearly identical to that of Theorem 1. To each set

A ∈ C, we can associate a collection of “egdes”

EA = {(u, y) ∈ Gr(G) : y ∈ Ac or u ∈ G−(A)}.

Suppose G is graph-connected and a set A is non-critical. Then, it must be that either A =

A1∪A2 with G−(A) = G−(A1)∪G−(A2) or A
c = Ac

1∪Ac
2 with G−1(Ac) = G−1(Ac

1)∪G−1(Ac
2).

In either case, it can be verified that EA ⊂ EA1 and EA ⊂ EA2 with both inclusions being

“detectable” in the sense that Q({y : (u, y) ∈ EAj
\EA}) > 0 and P ({u : (u, y) ∈ EAj

\EA}) >
0, for j ∈ {1, 2}. This observation implies that removing a non-critical set A cannot make any

other set A′ critical. Indeed, assuming otherwise would imply that EA ⊂ EA′ and EA′ ⊂ EA,
which is a contradiction. 󰃈

B Algorithms 2 and 3

B.1 Validity

It suffices to show that Algorithm 2 identifies all minimal critical supersets of a given self-

connected set. By Lemma 1, critical sets must be self-and complement-connected. Given a

self-connected set A, the idea is to list all possible expansions of A, denoted C = A ∪ B,

that satisfy two properties: (i) C is self- and complement-connected and (ii) there is no

self- and complement-connected C̃ such that A ⊂ C̃ ⊂ C with strict inclusions. To be self-

connected, the set C must contain G(u) for some u ∈ G−1(A)\G−(A). To find a minimal
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such C, it suffices to look for C = A ∪ G(u) for u ∈ G−1(A)\G−(A). If the subgraph of B

induced by (Cc, G−1(Cc)) is connected, such C is one of the minimal critical supersets of

A. If this subgraph “breaks” into disconnected components, denoted here by (Yl,Ul, El), for
l = 1, . . . , L, then only sets of the form Pl = C ∪

󰁖
j ∕=l Yj, for some l, can be minimal critical

sets. Indeed, such Pl is self-connected because each of Yj must be linked with C (otherwise,

the graph B would be disconnected), and complement-connected since the subgraph induced

by (Pl, G
−1(Pl)) is precisely the remaining connected component (Yl,Ul, El). Also, any proper

subset of Pl cannot be complement-connected by construction. Therefore, Algorithm 2 finds

all minimal critical supersets. That Algorithm 3 finds all critical sets follows from the

discussion in the main text.

B.2 Computational Complexity

The time complexity of decomposing the graph B into connected components using Depth

First Search is |V (B)| + |E(B)|, where |V (B)| = |Y| + |U| and |E(B)| are the numbers

of vertices and edges in B correspondingly (see, e.g., Section 3.2 in Kleinberg and Tardos,

2006). All further calculations apply within each connected component. To keep notation

simple, we assume that B itself is connected.

Let |C∗| denote the size of the smallest core-determining class. Let N = maxA⊆Y |N(A)|
denote the maximum cardinality of the set of vertices connecting a self-connected set A ⊆ Y
with the rest of the graph B, and L denote the maximum number of connected components

of the subgraph of B induced by (Ac, G−1(Ac)). These quantities are trivially bounded by

N < |U| and L < |Y| but are often much smaller and may remain bounded in large graphs.

First, consider Algorithm 2. Step 1 of the Algorithm requires reading at most N sets

from the adjacency list of B. For each of these sets, Step 2 decomposes a subgraph of B into

connected components and creates a list of at most L sets as a result. The complexity of

decomposing a subgraph of B into connected components is bounded by that of decomposing

the whole graph B. Thus, the complexity of Step 2 is bounded by N ·(|Y|+ |U|+ |E(B)|+L ·
|Y|). The number of minimal critical supersets of A is bounded by L·N , and each of them has

size at most |Y|, so removing the duplicates in Step 3 has complexity L ·N · |Y|. Therefore,
the total complexity of Algorithm 2 is bounded above by N · (|Y|+ |U|+ |E(B)|+ L · |Y|).

Next, consider Algorithm 3. Step 1 has complexity |Y| + |U| + |E(B)|, as discussed

above. Step 2-(i) requires reading |U| sets from the adjacency list ofB and Step 2-(ii) requires

checking complement connectivity for every such set, which has complexity |U|+|Y|+|E(B)|,
so the the total complexity is |U| · (|U|+ |Y|+ |E(B)|). Let C denote the output of Step 2-(i).

Step 2-(iii) applies Algorithm 2 first to all sets A in C, and then iteratively to the resulting
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collection of sets, denoted C ′. It may be the case that F (A) ∩ F (A′) ∕= ∅ for two distinct

sets A,A′ ∈ C ′, so computing the union F (C ′) =
󰁖

A∈C′ F (A) requires removing duplicate

sets after each iteration. Every set F (A) contains at most L · N sets of size at most |Y|,
and there are at most max(|U|, |C∗|) elements in each C ′, so the complexity of removing the

duplicates is bounded by L ·N · |Y| ·max(|U|, |C∗|). Since the duplicates are eliminated, at

every iteration — except possibly the first — Algorithm 2 is only applied to critical sets.

Taking stock, the complexity of Algorithm 3 is bounded by

L ·N ·max(|U|, |C∗|) · (|Y|+ |U|+ |E(B)|). (B.1)

Assuming bounded L and N and |U| 󰃑 |C∗|, all of which typically hold in applications, the

complexity bound in (B.1) is comparable with that of an oracle algorithm which receives

critical sets one by one and verifies that each of them is self- and complement- connected.

B.3 Connections with Existing Algorithms

One way to compute the smallest CDC (denoted as C∗) is to start from the system of

all Artstein’s inequalities and remove redundant ones. There exist generic methods for

identifying redundant and implicit-equality constraints in linear systems (see, e.g., Telgen,

1983; Schrijver, 1998). In practice, such methods require solving one linear program per

constraint, so the resulting algorithmic complexity scales proportionally to the total number

of constraints. In many settings, the total number of Artstein’s inequalities is exponential in

|Y| and |U|, which quickly makes the above approach computationally infeasible. In contrast,

our approach does not require considering each of the potentially redundant constraints.

Instead, it uses the additional structure of the problem (i.e., the bipartite graph) to directly

“build” the non-redundant constraints, thus substantially lifting the computational burden.

Another way to compute the smallest CDC is to find a minimal half-space representation

of a polytope given in a vertex representation (recall Section 4.3.3). The relevant polytope

is P = {Aπ : π 󰃍 0, π′1 = 1}, where A is a (|Y| + |U|) × |E(B)| binary matrix, in which

each column ae ∈ {0, 1}|Y|+|U| represents an edge e = (u, y) ∈ E(B). Artstein’s inequalities

provide a half-space representation of P , which may contain redundant elements, and the

smallest CDC gives a minimal such representation. More generally, a minimal half-space

representation of any polytope can be computed numerically using the algorithm of Avis

and Fukuda (1991). For the so-called “non-degenerate” problems, in which every facet of

P contains exactly |Y| + |U| vertices, their algorithm is shown to be output-sensitive: the

complexity of recovering the |C∗| facets of P is O(|C∗| · (|Y| + |U|) · E(B)). In our setting,

the “non-degeneracy” means that for every set A ∈ C∗, there are exactly |Y| + |U| edges
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(u, y) ∈ E(B) such that 1(y ∈ Ac) + 1(u ∈ G−(A)) = 1. This requirement appears to be

very restrictive and is not satisfied in any of our examples. Although the algorithm of Avis

and Fukuda (1991) applies more broadly, it is not generally output-sensitive and often does

not scale well in practice. In turn, our Algorithm 3 applies only to polytopes associated with

bipartite graphs and computes the minimal half-space representation in an output-sensitive

manner without any further restrictions.

Algorithm 3 is also related to the problem of listing all maximal independent sets (MIS)

of vertices in a graph. A MIS is a set of vertices that are mutually disconnected, and such

that adding any other vertex would violate this condition. Tsukiyama et al. (1977) proposed

an output-sensitive algorithm for listing all MIS-s in an arbitrary undirected graph Γ with a

worst-case complexity O(|MIS|× |V (Γ)|× |E(Γ)|). In our setting, each MIS corresponds to

a set of the form (Ac, G−(A)), where A ⊆ Y can be expressed as a union of elements of the

support of G (see Section 3.2). If all such A are self- and complement-connected, the set of

all MIS is the smallest CDC, and the worst-case complexity of our algorithm matches that of

Tsukiyama et al. (1977). Otherwise, Algorithm 3 finds MIS satisfying further connectivity

restrictions.

C Further Simulation Evidence

C.1 Computing Times

Tables 3 and 4 below summarize the computing times for all examples in the main text

where computation was done numerically. All computation was performed in Julia on a

2021 MacBook Pro with M1 chip with 10 cores and 32 GB RAM.

C.2 Dynamic Entry Game

Our simulation design follows that of Berry and Compiani (2020). Let T be the number of

observed periods and T̄ = 50 + T the total number of periods used in the simulation. Let

N = 10,000 be the sample size. The data are generated as follows: (i) Draw N vectors of

latent variables ε of size T̄ according to the AR(1) process specified in Example 2; (ii) For

each sample, draw X1 ∼ Bernoulli(p = 0.5) and solve for the optimal policy for T̄ periods.

(iii) Keep the last T periods as the observed data. There are three main parameters (π̄, γ, ρ)

set to (0.5, 1.5, 0.75), and an auxiliary parameter π′ = π − γ = −1. The grid has step size

0.025 and boundaries π ∈ [−1.5, 1.5], π′ ∈ [−3, 0], and ρ ∈ [0, 1].
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Heterogeneous firms, δj > 0

N 2 3 4 5 6

# Vertices 9 23 71 275 1341

# Edges 6 22 100 534 3320

Computing time
(in seconds)

10−4 10−3 10.81 − −

Two types of firms, β3 = β2

(N1, N2) (1, 1) (2, 2) (2, 4) (2, 7) (6, 6)

# Vertices 9 20 32 50 84

# Edges 6 15 25 40 71

Computing time
(in seconds)

10−4 10−4 10−4 10−3 10−3

Two types of firms, β3 > β2

# Vertices 9 23 42 69 135

# Edges 6 21 49 88 221

Computing time
(in seconds)

10−4 10−3 10−3 10−3 0.08

(a) Entry games in Example 1.

T 2 3 4 5 6 7 8 9 10

# Vertices 15 31 63 127 255 511 1023 2047 4095

# Edges 14 30 62 126 254 510 1022 2046 4094

Computing time
(in seconds)

10−4 10−3 10−3 0.02 0.09 0.42 1.86 8.61 43.16

(b) Dynamic binary choice model from Example 2.

Table 3: Graph characteristics and computing times for the smallest CDC in Examples 1–2

Notes: Computing times are averaged over 10 runs. Symbol “−” indicates that a single run did not finish
within 1 hour. See tables 1a and 1b for the results.
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Monotone outcome response

|D| \ |Y| 2 3 4 5 6 7 8

2 10−4 10−4 10−4 10−3 0.02 0.11 0.69
3 10−4 10−3 0.01 0.15 2.42 33.7 505.46
4 10−4 10−3 0.12 4.7 167.33 − −

Monotone and concave outcome response

|D| \ |Y| 2 3 4 5 6 7 8

3 10−4 10−4 10−3 0.03 0.37 4.76 59.94
4 10−4 10−4 10−3 0.1 2.04 45.05 1044.93

Table 4: Computing times for the smallest CDC in the potential outcomes model from
Example 3

Notes: Computing times (in seconds) are averaged across 10 runs. Symbol “−” indicates that a single run
did not finish within 1 hour. See Table 2 for the results.

D Additional Examples

We have reserved two more examples for the appendix. The first example is a discrete choice

model with endogenous covariates, studied by Chesher et al. (2013) and Tebaldi et al. (2019).

Example 4 (Discrete Choice with Endogeneity). Individuals choose one of J+1 alternatives,

Y ∈ {y0, y1, . . . , yJ} ≡ Y , where y0 represents the outside option. Choosing yj yields utility

vj(X) + εj , where X ∈ {x1, . . . , xK} ≡ X may include prices and individual- and market-

level covariates, and εj ∈ R are latent utility shifters. Individuals maximize their utility,

so Y = yj∗ for j∗ = argmaxj{vj(X) + εj}. Normalize v0(x) = 0, for all x, and ε0 = 0.

Some components of X may be correlated with the latent payoff shifters ε = (ε0, ε1, . . . , εJ),

but the nature of this dependence is left unspecified. The econometrician observes Y ∈ Y ,

X ∈ X , and instrumental variables Z ∈ Z, which are statistically independent of ε.

Note that X is endogenous and its data-generating process is left unspecified. Such X

can be viewed as part of the outcome vector (Y,X). Denote vjk = vj(xk), for all (j, k), and

let θ = ((vjk)
J
j=1)

K
k=1; denote Uj ≡ εj − ε0, for all j, and let U = (U1, . . . , UJ) ∈ RJ . Then,

given U and θ, the model produces a set of possible values for (Y,X) given by

G(U ; θ) = {(yj, xk) : vjk − vlk 󰃍 Ul − Uj for all l ∕= j}.

Figure 7 illustrates possible realizations of G(U ; θ) for some fixed θ in a model with Y =

{y0, y1, y2} and X ∈ {x1, x2}, assuming that v11 < v12 and v21 > v22. Dashed lines outline

the partition of the latent variable space that corresponds to possible realizations of G(U ; θ),
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Figure 7: Set-valued predictions in a discrete choice model from Example 4 with J = K = 2,
assuming that v11 < v12 and v21 > v22.

highlighted in blue.

Figure 8 depicts the corresponding bipartite graph. The upper part represents the out-

come space, Y ×X , and the lower part corresponds to the partition of latent variable space

in Figure 7. For example, u4 = {(U1, U2) : U1 󰃑 −v11, U2 󰃑 −v22}. Depending on the values

of θ = ({vjk}j,k, γ), the partition and the probabilities of the corresponding regions differ,

but as long as v11 < v12 and v21 > v22, the corresponding bipartite graph remains the same.

Suppose that all θ ∈ Θ satisfy this restriction.19 Then, the smallest CDC does not change

with θ or Z, so it only needs to be computed once. Since P (G(U ; θ) ⊆ A) does not depend

on z, the sharp identified set is given by

Θ0 = {θ ∈ Θ : essinf
z∈Z

P ((Y,X) ∈ A |Z = z) 󰃍 P (G(U ; θ) ⊆ A) for all A ∈ C∗}.

If X ∈ {x1, . . . , xK}, the power set of the outcome space grows proportionally to 2(J+1)K .

Yet, due to the simple structure of the underlying bipartite graph, the smallest CDC appears

to grow proportionally to 2K . Table 5 summarizes the results for K ∈ {2, . . . , 15}.
The analysis above is similar to Chesher et al. (2013): They also treat X as part of

the outcome vector and condition only on Z, which leaves FU |X=x completely unspecified.

The inequalities in C∗ coincide with those obtained by Chesher et al. (2013), yet our results

19Otherwise, partition the parameter space as in Example 1 in the main text.
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(y2, x2) (y2, x1) (y0, x2) (y0, x1) (y1, x2) (y1, x1)

u1 u2 u3 u4 u5 u6

Figure 8: Discrete choice model from Example 4 with J = 2 and X ∈ {x1, x2}.

K 2 3 4 5 6 7 8

Total 62 510 4,094 32,766 0.2 · 106 2 · 106 107

Smallest 12 33 82 188 406 842 1,703

K 9 10 11 12 13 14 15

Total 108 109 1010 1011 1011 1012 1013

Smallest 3,397 6,733 13,321 26,372 52,298 103,912 206,828

Table 5: Core-determining classes in the discrete choice model from Example 4.

additionally imply that the characterization of Θ0 cannot be further simplified, without

loosing sharpness. Tebaldi et al. (2019) take a different approach. They introduce the

Minimal Relevant Partition (MRP), which is conceptually similar to the partition in Figure

7, and condition on bothX and Z, treating the probabilities that the conditional distribution

FU |X=x assigns to each of the regions in MRP, denoted η = (η1, . . . , η|MRP |), as unknown

parameters. Theorem 2.33 in Molchanov and Molinari (2018) implies that the two approaches

are equivalent and deliver the same sharp identified sets. If the functional of interest depends

only on η and Z is discrete, the MRP offers substantial computational advantages. If the

support of X is relatively small, but the support of Z is very rich, the CDC approach may

be computationally simpler. 󰃈

The final example revisits the network formation model of Gualdani (2021).

Example 5 (Directed Network Formation). N firms form directed links with each other.

The strategy of each firm is a binary vector Yj = (Yjk)k ∕=j ∈ {0, 1}N−1, where Yjk indicates

the presence of a directed link from j to k, and the outcome of the game is Y ∈ {0, 1}N(N−1).

The solution concept is Pure Strategy Nash Equilibrium (PSNE). Since the total number

of directed networks with N players is 2N(N−1), the size of the outcome space Y of this
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game is 22
N(N−1)

. This renders sharp identification practically infeasible, even for small N .

To simplify the analysis and motivate inequality selection, Gualdani (2021) imposes further

restrictions on the model. The discussion below is conditional on covariates X = x.

First, for each firm k, define a local game Γk in which the remaining N − 1 firms decide

whether to form a directed link to firm k. Let Y k = (Y k
1 , . . . , Y

k
N) ∈ Yk denote the outcome

of Γk. Suppose the payoff of firm j is additively separable, πj(Y, ε; θ) =
󰁓

k ∕=j π
k
j (Y

k, εk; θ),

where each πk
j (Y

k, εk; θ) is the same as in the entry game in Example 1 with δj > 0. Then,

the payoff from each local game depends only on the outcome of that local game, and Y is

a PSNE if and only if Y k is a PSNE of Γk, for all k. Second, suppose that the local games

are statistically independent — that is, both ε1, . . . , εN and the corresponding selection

mechanisms are mutually independent.

Under the above assumptions, the random set of equilibria of the game G(ε) is a Cartesian

product of N independent random sets Gk(εk) of equilibria in the local games. It follows

that Core(G1) × · · · × Core(GN) = Core(G) ∩ S, where S is the set of distributions on Y
with independent marginals over Yk. If the distribution of the data lies in S, the identified

sets

Θ0 = {θ ∈ Θ : P (Y ∈ A) 󰃍 P (G ⊆ A) ∀A ⊆ Y};

Θ′
0 = {θ ∈ Θ : P (Y k ∈ Ak) 󰃍 P (Gk ⊆ Ak) ∀Ak ⊆ Yk, ∀k}

are equal. If the distribution of the data does not lie in S, then Θ0 ⊆ Θ′
0, because the latter

checks a subset of inequalities from the former. To characterize Θ′
0, Theorem 1 can be applied

to each Γk separately. For N = 3, there are 254 inequalities in total and 15 in the smallest

class. For N = 4, there are 1019 inequalities in total and only 144 in the smallest class. For

N = 5, there are 10307 inequalities in total and 95,080 in the smallest class. Although the

computational burden is lifted substantially, the resulting set of inequalities is still too large.

To this end, one can adopt a type-heterogeneity assumption as in Example 1 in the main

text to keep the analysis tractable. The details are left for future research. 󰃈
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