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Abstract

In many partially identified econometric models, sharp identified sets can be gener-
ically characterized using specific moment inequalities known as Artstein’s inequalities.
Although such a characterization is theoretically appealing, the resulting collection of
inequalities typically includes many redundant elements, which do not carry additional
identifying information but make the analysis computationally intractable. In this pa-
per, we characterize the smallest possible collection of moment inequalities that suffices
for sharpness and provide an efficient algorithm to obtain such inequalities in practice.
As a result, we obtain tractable characterizations of sharp identified sets in several
well-studied settings. In situations when the smallest collection of inequalities is still
infeasible, we discuss additional modeling assumptions that further simplify compu-
tation. We apply the results to the models of static and dynamic games, potential
outcomes, discrete choice, network formation, selectively observed data, and ascend-
ing auctions, and demonstrate in simulations that the proposed method substantially

improves upon informal inequality selection.
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1 Introduction

Many econometric models have the following structure: Given covariates X € X, latent
variables U € U, and parameters § € ©, the model produces a set G(U, X;0) C Y of
possible values for the outcome Y € ). The researcher does not observe G(U, X;0) directly,
but postulates that Y € G(U, X;6), almost surely, for some 6, € ©. The mechanism
that selects a single value Y from the set G(U, X;6y) may be somehow restricted or left
completely unspecified.! Examples of such settings include static and dynamic entry games
(e.g., Tamer, 2003; Ciliberto and Tamer, 2009; Berry and Compiani, 2020; Gu et al., 2022);
network formation models (e.g., Miyauchi, 2016; De Paula et al., 2018; Sheng, 2020; Gualdani,
2021); English auctions (e.g., Haile and Tamer, 2003; Aradillas-Lépez et al., 2013); models
with missing or interval data (e.g., Manski, 1994, 2003; Beresteanu et al., 2011); potential
outcome models (e.g., Heckman et al., 1997; Manski and Pepper, 2000, 2009; Beresteanu
et al., 2012; Russell, 2021); and discrete choice models with endogeneity (e.g., Chesher et al.,
2013; Chesher and Rosen, 2017; Torgovitsky, 2019; Tebaldi et al., 2019) or unobserved or
counterfactual choice sets (e.g., Manski, 2007; Barseghyan et al., 2021).

Sharp identified sets in such models can be generally characterized as follows. By as-
sumption, Y € G(U, X;6), almost surely, so {G(U, X;6y) C A} implies {Y € A}, for any
measurable set A C ). Thus, at 6 = 6, the inequalities

PYeA|X=2x)>2PGUX;0) CA|X =uz0) (1)
must hold for all A C ) and = € X. Therefore, a natural identified set for 6 is
©p={0€0O: (1) holds forall AC Y,z € X}. (2)

The results of Artstein (1983) and Theorem 2.33 in Molchanov and Molinari (2018) imply
that the inequalities in (1) hold if and only if Y € G(U, X;0), almost surely. Therefore,
assuming the parameter space © captures all other restrictions imposed on the model, the
identified set © is sharp.

The characterization in (2) is often impractical since the total number of Artstein’s
inequalities may be very large. In such settings, it is customary to select a smaller collection
of inequalities based on intuition or experience and proceed with an outer set for ©y. This

approach has two important drawbacks: First, omitting an important inequality may lead

'In some examples, the set-valued predictions naturally arise in the space of latent variables, rather
than the outcome space. Specifically, given Y, X, and 6, the model produces a set G(Y, X;6) such that
U € G(Y,X;0y) for some 0y € ©g. As discussed in Chesher and Rosen (2017), the two approaches are
equivalent. Our analysis applies in both settings.



to a substantial loss of identifying information; Second, having outer identified sets that are
very narrow may be a symptom of “identification by misspecification” and potentially lead
to misleading conclusions (see Kédagni et al., 2020).

At the same time, examples suggest that many inequalities in (2) may be redundant, in
the sense that omitting them does not change the resulting identified set. By finding and
removing such inequalities, it is often possible to keep the analysis tractable while avoiding
information loss and mitigating misspecification concerns. This paper proposes a simple and
computationally efficient way to do so.

To address inequality selection, we focus on core-determining classes following Galichon
and Henry (2011); Chesher and Rosen (2017); Luo and Wang (2018); and Molchanov and
Molinari (2018). Consider the Artstein’s inequalities in (1) for a fixed X = x. A class of C
of subsets of ) is called a core-determining class (CDC) if verifying (1) for all A € C suffices
to conclude that it holds for all A C ). Evidently, smaller classes C lead to more concise
characterization of the sharp identified set. In this paper, we obtain a simple analytical
characterization of the smallest possible CDC. We show that such CDC depends only on
the structure of the model’s correspondence G(U, x;6) and the null sets of the underlying
probability distribution and typically needs to be computed only a finite number of times.
We also develop a new algorithm for computing the smallest CDC, which avoids the major
computational bottleneck of checking all candidate sets for redundancy. The algorithm
operates by checking the connectivity of suitable subgraphs of a bipartite graph, which
represents the model’s correspondence, and is output-sensitite: its’ computational complexity
is proportional to the size of the smallest CDC. We apply the proposed methodology to obtain
tractable characterizations of sharp identified sets in several well-studied settings.

This paper contributes to the large and growing literature on econometrics with partial
identification; see, e.g., Pakes et al. (2015); Molinari (2020); Chesher and Rosen (2020);
and Kline et al. (2021) for detailed reviews. The key object in the identification analysis
is the set P(x;0) of model-implied distributions of the outcome Y, given covariates X = z
and a parameter value § € ©. By construction, the sharp identified set for 6, is given by
Oy ={0 € ©: Py|x—, € P(x;0), v € X-as.}. Existing approaches to identification are
based on obtaining tractable characterizations of the set P(x;8).

Several existing papers represent the set P(z;6) using the Artstein’s inequalities in (1).
Galichon and Henry (2011) discuss several methods for computing sharp identified sets in
discrete games. They consider submodular optimization and optimal transport approaches,
which we discuss in more detail in Section 4.3, and introduce the notion of core-determining
classes. In particular, they show that if the model’s correspondence is suitably monotone,

there exists a CDC whose size scales linearly with the size of the outcome space. In general,



however, even the smallest CDC may grow exponentially with the size of the outcome space,
and it is much harder to characterize. This paper extends the results of Galichon and
Henry (2011) by deriving the smallest possible CDC without any restrictions on the model’s
correspondence and developing an efficient algorithm to compute it in practice.

Chesher and Rosen (2017) derive analytical sufficient conditions for identifying redundant
Artstein’s inequalities. In this paper, we obtain a richer set of necessary and sufficient
conditions for redundancy and use it to characterize the smallest possible CDC. Moreover,
we provide a new algorithm to compute such CDC in practice. Bontemps and Kumar
(2020) characterize the smallest CDC in a class of entry games with complete information
and provide an algorithm to compute it. Our Theorem 1 and Algorithm 3 yield the same
characterization in this example, but apply far more generally.

Luo and Wang (2018) also give a characterization of the smallest CDC, which they call
“exact,” in their Theorem 2. We improve on and extend this result in several directions.
First, although Theorem 1 below leads to the same CDC as Theorem 2 in Luo and Wang
(2018), when coupled with Lemmas 1 and 2, it provides a more transparent and complete
characterization. These new results identify the “critical” sets, which must be included in
any CDC, as well as “implicit-equality” sets, for which the corresponding Artstein’s inequal-
ities always bind. Second, Corollary 1.1 establishes that the smallest CDC depends only
on the supports of the random sets G(U, x;0), conditional on X = z. Since the support
typically has limited dependence on parameter values and covariates, this result implies that
in discrete-outcome models, the CDC only needs to be computed a finite number of times
and that the conditional Artstein’s inequalities can be intersected,” which leads to a sim-
pler characterization of sharp identified sets in many settings. Third, Theorem 1 implies an
efficient algorithm for computing the smallest CDC numerically, which remains feasible far
beyond Algorithm 1 of Luo and Wang (2018). Finally, in Section 5, we extend the main
results to settings in which the outcome variable has infinite support.

Other closely related papers are Beresteanu et al. (2011) and Mbakop (2023). Beresteanu
et al. (2011) study discrete games under different solution concepts and characterize the set
P(x;0) as the Aumann expectation of a suitably defined random set. Convexity of the Au-
mann expectation allows to express it via the support function and thus characterize the
sharp identified set through a convex optimization problem. In turn, Mbakop (2023) studies
panel discrete choice models and argues that, under certain restrictions on the distribution
of unobservables, the sets P(x;0) are polytopes and the inequalities that define their facets
can be computed by solving a multiple-objective linear program. The CDC approach com-

plements these methods and, as we argue below, enables faster computation and simpler

2Given a collection of inequalities 6(x) > 0, for all z € X, by “intersecting” we mean inf,cy 6(z) > 0.



inference procedures in many settings.

Other related work includes Tebaldi et al. (2019) and Gu et al. (2022). The former
paper studies discrete choice models with endogeneity and the latter covers general discrete-
outcome models. Both papers focus on obtaining sharp bounds directly on the counterfac-
tual of interest, ¢(6y) € R, rather than the full vector of parameters 6, € ©. They consider
counterfactuals that can be expressed as linear functions of the probabilities of regions in a
suitable partition of the latent variable space. If the restrictions on the distribution of latent
variables induce only a finite number of linear constraints on such probabilities, the sharp
bounds on the counterfactual can be obtained using linear programming. A similar approach
is taken by Russell (2021), who studies a potential outcomes model with endogenous treat-
ment assignment. The author compares different approaches to characterizing sharp bounds
on functionals of the joint distribution of potential outcomes in terms of the complexity of
the resulting optimization problems. In the above settings, we show that the CDC approach
leads to simpler optimization problems if the smallest CDC is manageable and the excluded
exogenous variables have rich support.

The algorithm we propose is related to the problems of identifying redundant constraints
in linear systems (Telgen, 1983), computing a minimal half-space representation for a special
class of convex polytopes (Avis and Fukuda, 1991), and listing maximal independent sets in
bipartite graphs (Tsukiyama et al., 1977), and may be of independent interest. We defer a
more detailed discussion to Section 4 and Appendix B.3.

The rest of the paper is organized as follows. Section 2 presents motivating examples and
provides some background. Section 3 presents novel theoretical results. Section 4 discusses
computation. Section 5 provides an extension to models in which the outcomes have infinite

support. Section 6 illustrates the utility of selecting inequalities. Section 7 concludes.

2 Models with Set-Valued Predictions

2.1 Motivating Examples

To outline the scope of the paper, we start with three stylized examples, all of which feature
outcomes with finite support. Additional examples are considered in Appendix D, and a
discussion of continuous-outcome models is deferred to Section 5.

The first example is a static entry game studied by Bresnahan and Reiss (1991); Berry
(1992); Tamer (2003); Ciliberto and Tamer (2009); Beresteanu et al. (2011); and Aradillas-
Lépez (2020).



Example 1 (Static Entry Game). Each of N firms, indexed by j = 1,..., N, decides whether
to stay out or enter the market, Y; € {0,1}. The payoff of firm j is

mi(Y,e5) = Yi(aj + 0;N;(Y) + &),

where Y = (V1,...,Yn) € {0,1}" is the outcome vector, N;(Y) is number of entrants
except j, U = (g1,...,ex) € RY are payoff components unobserved to the researcher, and
(o, 5j)§V:1 € R?V are payoff parameters. The joint distribution of latent variables U, denoted
F(-;7), is assumed to be known up to a finite-dimensional parameter v € R%. Exogenous
covariates X can be accommodated by letting (a;,d;,7) = (o;(X),0;(X), (X)), but are
omitted here for simplicity. The firms have complete information and play a pure-strategy
Nash Equilibrium. The researcher observes Y € {0,1}" and wants to learn about features
of = ((a;,0;)}.1,7). Given U and 6, the model produces a set of predictions for Y’
corresponding to the set of pure-strategy Nash Equilibria:

GU;0) ={y € {0,1}" 1 y; = 1(a; + 6;N;(y) +¢; = 0), forall j=1,...,N}.

Figure 1 illustrates possible realizations of G(U;#) when N = 2 and §; < 0 for j = 1,2.
Dashed lines outline the partition of the latent variable space that corresponds to possible
realizations of G(U; ), highlighted in blue. |

The next example is a simple dynamic model adapted from Berry and Compiani (2020).

Example 2 (Dynamic Monopoly Entry). In time period ¢t = 1,..., 7T, a firm decides to stay
out of or enter the market, A; € {0,1}. The per-period profit is

7_T—€t letzl,Atzl,
W(Xt’Ahgt) = T — & =7 lf Xt = O,At = ]_,

0 otherwise,

where X; € {0,1} indicates whether the firm was active in period ¢t — 1, &, € R is the
variation in fixed costs, observed by the firm, and (7, ) are the corresponding fixed profit
and sunk costs of entering the market. Suppose that ¢, = pe; 1 + m% for some
p < 1, and v; are i.i.d. N(0,1). As in the preceding example, the parameters 7, v, and p
may depend on exogenous covariates, omitted here for simplicity. The researcher observes
Y = (X1, Aq,..., Ar) € {0, 1}T+L
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(a) Static entry game from Example 1

with N = 2 and §; < 0 for j = 1,2 (b) Dynamic model from Example 2 with
= ] = 1, 4.

T = 2. Outcomes are labeled (X7, A;, Ag).

Figure 1: Set-valued predictions in Examples 1 and 2.

The Bellman equation for the firm’s problem is

V(X&) = max (W(Xt,At,et) + OBV (Xit1,e041) | Ar, Xo, &4 ) ,
A¢€{0,1}

where § € (0,1) denotes the discount factor, which is assumed known. Under standard

conditions, there is a unique stationary solution, A; = 1(U; < 7y(X;)), where U; is the

quantile transformation of &;, and 7 is an increasing function of X; known up to 6 = (7,7, p).

Note that X; is endogenous and its data-generating process is left unspecified. One way

to proceed is to treat X as part of the outcome vector Y = (X, Ay,..., Ar). Then, given

U= (Uy,...,Ur) and 0, the model produces a set of possible values for Y given by
GU;0) = {(z1,a1,...,ar) : ap = LUy < mp(2y)) for t = 1,...,T}.

Figure 1 illustrates possible realizations of G(U;#) for T = 2. Dashed lines outline the
partition of the latent variable space that corresponds to the possible realizations of G(U;6),
highlighted in blue. [

The final example is a potential outcomes model studied in Balke and Pearl (1997),
Heckman et al. (1997), Heckman and Vytlacil (2007), Beresteanu et al. (2012); Russell
(2021), and Bai et al. (2024), among many others.

Example 3 (Potential Outcomes Models). Let D € D denote the treatment assignment,
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(a) No restrictions on outcome response. (b) Increasing outcome response, Y;* > Y.

Figure 2: Set-valued predictions Example 3 with |D| =2 and |Y| = 4.

Y* = (Y] )aep € VP! — potential outcomes, Y = Y}, — observed outcome, and Z € Z —
instrumental variables. Suppose Y* and Z are statistically independent and the outcome
response function d — Y satisfies additional restrictions summarized by Y* € V* for some
known set V* C VPl (e.g., monotonicity, partial monotonicity, concavity, etc.). Suppose the
sets D and ) are finite, and Z is arbitrary. The primitive parameter of interest is the joint
distribution of potential outcomes, 0 = {P(Y* = y*)},cyinl.

In this example, it is more convenient to construct the set-valued prediction for the latent
variables Y* given observables (Y, D, Z). If D = d, then Y} =Y, but the only information
available about Y7 for d # d is that Y; € Y and Y* € Y*. Thus, the set-valued prediction
for Y* can be written as:

G(Y,D) = Bp(Y) N Sy~

where By(Y) = (Y x --- x {Y'} x ...)Y) with {Y} in the d-th component. Notice that Z
does not affect G(Y, D) in any way. Figure 2 illustrates two possible realizations of G(Y, D)
with D € {0,1} and YV = {y1,y2,¥3,y4}. The vertical blue line corresponds to G(yz,0)
and the horizontal blue line to G(ys,1). In Panel (a), Sy~ = Y? and and in Panel (b),
Sy« ={(y.y) €Yy <y} n

2.2 Background: Random Sets and Artstein’s Inequalities

In the above examples, the set-valued prediction of the model depends on a realization of
some random variables, so it is a random set. Identification in such settings can naturally
be studied using tools from the theory of random sets. We briefly introduce the necessary
concepts and refer the reader to Molchanov and Molinari (2018) for a textbook treatment.
Let Y € Y C R% denote the outcome variables, X € X C R% — observed covariates,

and U € U C R%w — latent variables. All random variables are defined on a common,



complete probability space (€2, F, P). Let € denote the class of all closed subsets of ), B —
the Borel sigma-field on ), and M — the set of all probability measures on (Y, B).
Suppose the econometric model is characterized by a parameter vector § € ©, which
may be infinite-dimensional, and a correspondence G(-,-; 0) : U x X = ), which delivers a
set-valued prediction for the outcomes. We assume that, for each 6 € O, the correspondence
G(-,-; 0) is measurable in the sense that {w € Q2 : G(U(w), X (w);0) C A} € F,forall A € €.
We further assume that G(U, X; ) is non-empty and closed, P-almost surely, for all § € ©.
Such a correspondence defines a random closed set. The distribution of a random closed set

can be described by its’ containment functional, defined, for all A € €,° as
Cow,x0)(A) = P(G(U, X;0) C A),

Any random variable Y, satisfying P(Y € G(U, X;0)) = 1 is called a selection of G(U, X;0).
The set of distributions of all selections is called the core. Artstein (1983) showed that the
core consists of all probability distributions that dominate the containment functional on

closed sets, that is
Core(G(X,U;0)) = {p € M : u(A) = Cow,x)(A), forall A e €}

To characterize the core in practice, it may suffice to consider a smaller class of sets.

Definition 2.1 (Core-Determining Class). For any class of sets C C €, denote
M(C) = {[L eM: /L(A) = CG(U,X;0)<A>7 fOT’ all A € C}

A class C C € is core-determining if M(C) = M(C).
We will distinguish two special types of sets.

Definition 2.2 (Critical and Implicit-Equality Sets). A set A € € is critical if M(C\A) #
M(C). A set A € E\{Y, 2} is an implicit-equality set if u(A) = Caw,x0)(A), for all
w € Core(G(U, X;0)).

Any core-determining class must contain all critical sets and ensure that all implicit-

equality constraints hold. To illustrate these definitions, suppose the outcome space ) is

31t suffices to specify the containment functional on all closed sets, but it can be extended and remains well-
defined on all Borel sets. Equivalently, the distribution of a closed random set may be characterized by the
capacity functional, Tewu,x;0)(A) = P(G(U, X;0)NA # @), which satisfies T, x,0)(A) = 1—Cqu,x,0)(A).
The same comment applies to the core of a random set defined ahead. See Sections 1.2-1.3 of Molchanov
and Molinari (2018) for the details.



Figure 3: Stylized illustration: The core of a random set.

finite. Then, M is a simplex in RPI and Core(G(U, X)) is a compact polyhedron, such as
the one depicted in Figure 3. Here, Aj contains all implicit-equality sets, and the gray shaded
region depicts the set {u € M : u(A) = Cowx.0(A), for all A € Ag}. The straight lines
correspond to Artstein’s inequalities with arrows indicating the directions in which they are
satisfied. The core is highlighted in blue. Any class of sets that includes AgU{ A1, Az, Ay, A5}

is core-determining. The sets A;, Ay, Ay, A5 are critical, while the sets Az, Ag are not.

3 Sharp Identified Sets with Finite Outcome Spaces

Suppose the model predicts that Y € G(U, X; ), almost surely, for some 6, € ©. With the

above definitions, the sharp identified set for 6, can be characterized as*
O ={0 € ©: Pyix=2(A) 2 Co,z0)| x=2(A), for all A € C(x,0),as. v X}, (3)

where C(z,0) C € is a core-determining class for the random set G (U, x;6) conditional on
X =2z, and Cowe)| x=2(A) = P(G(U,x;0) C A| X = z) is the conditional capacity func-
tional. In this section, we characterize the smallest possible core-determining class C*(z; 6),
clarify how it depends on z and 6, and obtain sharp identified sets in several applications.

Until Section 5, we focus on settings with a finite outcome space, so € = B = 27.

4The equivalence between the unconditional and conditional Artstein’s inequalities follows from Theorem
2.33 in Molchanov and Molinari (2018).
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3.1 Graph Representation

Fix some x € X and 0 € O. Let S(x,0) = {G4,...,Gg} denote the support of G(U, x;0)
conditional on X = z, i.e., the set of sets G, C Y such that P(G(U,x;0) = G| X =x) > 0.
Partition the latent variable space U accordingly, uy = {u € U : G(u,x;0) = Gy}, and
denote U(z,0) = {u1,...uk}. Define a probability measure P, g, on U(x,8) by P e (ux) =
Pyix=z({u : G(u,2;0) = Gi}). Then, the random set G(U, z;0), conditional on X = z, can
be viewed as a correspondence G : (U(z,6), 249 P29)) = Y between two finite spaces.
In what follows, with some abuse of notation, we denote U (z;60) by U and P, by P, let
G : U =2 Y denote the random set G(U, x;0), conditional on X = z, and Cg(+) denote the
conditional containment functional, Cq(A) = P(G(U,x;0) C A| X = z). For each A C Y,

we denote the lower and upper inverses of G by
G7<A) = {Uk eEU: G(uk) Q A}, Gil(A) = {uk eEU: G(uk) NnA # @}

Note that G~ (A) C G71(A).

We represent the correspondence G by an undirected bipartite graph B with vertices
V(B) = (V,U) and edges E(B) = {(u,y) e U x Y : y € G(u)}. For any given x and 6,
the graph B can be constructed either analytically or numerically, by partitioning the latent
variable space as in Figure 1. Note that, although the thresholds defining the partition
depend on z and 6, the graph stays the same as long as each of the regions in the partition
has non-zero probability. The following examples illustrate.

Example 1 — 3 (Continued). Figure 4 presents the bipartite graphs for Examples 1 — 3.

Panel (a) depicts the binary entry game with negative spillovers from Example 1. The
upper part represents the outcome space {0, 1}?, and the lower part represents the partition
of latent variable space illustrated in Figure 1. For example, u; = {(g1,62) € R?* : ¢; <
—aj,j = 1,2}, and uz = {(e1,82) € R* : —q; < g; < —a; — §;}. Also, for example,
G(us) ={(1,0),(0,1)}, G=({(1,0)}) = uz, and G7({(1,0), (0, 1)}) = {uz, us, us}.

Panel (b) depicts the dynamic monopoly entry model from Example 2 with "= 2. The
upper part represents the outcome space {0,1}* with outcomes labeled as (x1,a;,as), and
the lower part represents the partition of latent variable space illustrated in Figure 1. For
example, uy = {(U1,Us) € [0,1]% : 75(0) < Uy < 79(1),Us < 79(0)}, and us = {(Uy,Us) €
(0,12 : Uy > 79(1),Us > 19(0)}. Also, for example, G({uy,us}) = {(0,1,1),(1,1,1),(0,0,0)}
and G~1({(0,1,1),(1,1,1),(0,0,0)}) = {uy, us, us3, us, ug }-

Panel (c) depicts the potential outcomes model from Example 3 with D = {0,1},
Y = {y1,v2,93,91}, and Sy+ = Y. The upper part is Sy+, and the lower part is D x
Y. For example, G((0,2)) = {(2,1),(2,2),(2,3),(2,4)} corresponds to the blue vertical

11



(0,0) (1,0) (0,1) (1,1)
U U9 Us Uy Us

(a) Entry game from Example 1 with N =2 and §; < 0 for j = 1,2.

(0,1,1) (1,1,1) (0,0,1) (0,0,0) (1,0,1) (1,0,0) (1,1,0) (0,1,0)

Uy U2 us Uy Us Ue Uz

(b) Dynamic binary choice model from Example 2 with 7' = 2.

(0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (0,4) (1,4)

(c) Potential outcomes model from Example 3 with D = {0,1}, Y = {1,2,3,4}, Sy~ = V2.

Figure 4: Bipartite graphs in Examples 1 — 3.

line and G((1,3)) = {(1,3),(2,3),(3,3),(4,3)} corresponds to the blue horizontal line in
Panel (a) of Figure 2. Also, for example, G~({(2,1),(2,2),(2,3),(2,4)}) = {(0,2)}, and
G_l({<27 1)7 (27 2)’ (27 3)7 (274)}) - {(17 1)7 (07 2)’ (17 2)7 (17 3)7 (1’ 4)} .

3.2 The Structure of Redundant Inequalities

The redundancy of Artstein’s inequalities can be expressed in terms of the connectivity of
suitable subgraphs of the graph B. A subgraph of B induced by the vertices (Vy, V) is an
undirected graph with vertices (Vy, V) and edges {(u,y) € E(B) : u € Vi,y € V3}. A
graph is said to be connected if every vertex can be reached from any other vertex through

a sequence of edges.
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First, suppose that for some A C ), there are sets A;, A, C Y such that A; N Ay = @,
AjUAy = A, and G (A1 U Ay) = G (A1) UG (As). Here, the latter condition means that
G C A; U A, if and only if either G C A; or G C Ay, so Cg(Ay) + Cg(Az) = Co(A). Then,
summing up the inequalities u(A;) > Ce(A1) and p(A2) > Ce(Asz), we obtain

p(A) = p(Ar) + p(Az) = Ca(Ar) + Co(Az) = Ca(A), (4)

so A is redundant given A; and As. For example, consider the graph in Panel (b) of Figure
4. Let Ay ={(0,1,1),(1,1,1)}, A = {(1,1,0),(0,1,0)}, and A = A; U A,. Then, G~ (4;) =
{u1}, G~ (As) = {us}, and G~ (A) = {uy, ur}. Thus, all of the above conditions are satisfied,
and A is redundant given A; and A,. Importantly, note that the subgraph induced by
(A,G~(A)) is disconnected.

As a special case, suppose that A # G(G~(A)), where G(G7(A)) = U eaolG(w) : G(w) C
A}. That is, the set A cannot be expressed as a union of elements of the support of G.
Letting A; = G(G~(A)) and Ay = A\A;, we have G~ (A1) = G (A) and G~ (42) = 2.
The inequality u(As) = Cg(Az) = 0 holds trivially, so, following the argument in (4), A
is redundant given A;.> Consider again the graph in Panel (b) of Figure 4. Let A =
{(0,0,1),(0,0,0),(1,0,1)} and A; = {(0,0,1),(1,0,1)} C A. The set A cannot be expressed
as the union of elements of the support, and G~ (A) = G~ (A;) = {u4}. Thus, A is redundant
given A;. As before, note that the subgraph induced by (A, G~ (A)) is disconnected.

Second, suppose that for some A C Y there are sets A;, Ay # A such that A; N Ay, = A,
AjUAy; =Y, and G~ (A1) UG (Ay) = U. The latter condition means that for all u € U,
either G(u) C A; or G(u) C Ay, which implies Ci(A4;) + Ca(Az) =1+ Ce(A1 N Ay). Then,
adding up the inequalities pu(A;) = Cg(A1) and pu(As) > Cg(As), we obtain

14+ pu(A) = p(Ar) + p(As) = Ca(Ar) + Ca(Az) = 14 Ca(A), (5)

so A is redundant given A; and As. The above conditions can be equivalently stated as
AU A = A AN A5 = @, and G1(AS) N G71(4S) = @. Returning to Panel (b)
of Figure 4, let A = {(1,1,1),(0,0,1),(0,0,0)}, 41 = AU {(0,1,1)}, and Ay = AU
{(1,0,1),(1,0,0),(1,1,0),(0,1,0)}, so that A; N Ay = A. Then, G~ (A;) = {uy, us, uz} and
G~ (A2) = {ug, u3, uy, us, ug, ur}, so that G~(A;) UG (Ag) = U. Therefore, A is redundant
given A; and Aj, as in Equation (5). In this case, the subgraph induced by (A¢, G~1(A)) is

disconnected.

5 This observation implies that we may restrict attention to sets A which can be expressed as unions of
elements of the support. See the errata to Beresteanu et al. (2012), Chesher and Rosen (2017), and Theorems
2.22-2.23 in Molchanov and Molinari (2018) for related arguments.
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Thus, for any set A C ) that is redundant according to (4) or (5), the subgraph of B
induced by either (4, G~ (A)) or by (A%, G71(A)) is disconnected. As we show below, this

simple property characterizes all redundant sets.

3.3 The Smallest Core-Determining Class

Following the above discussion, we say that a set A C ) is self-connected if the subgraph of
B induced by (A, G~ (A)) is connected. Say that A is complement-connected if the subgraph
of B induced by (A¢, G71(A)) is connected. Our first result characterizes the critical sets.

Lemma 1. LetU = {uy,...,ux} andY = {y1,...,ys} be finite sets, and G : (U,24,P) = Y
be a non-empty random set with a bipartite graph B. Suppose that B is connected and
P(ug) > 0, for all uy, € U. A set A € 2Y\{Y, @} is critical if and only if it is self-connected

and complement-connected.

The proof of this result is constructive: Given a set A that is both self- and complement-
connected, we construct a distribution p € Core(G) such that pu(A) = Cu(A) and pu(A) >
Ca(A) for all A # A. This implies that the set {g € Core(G) : u(A) = Ca(A)} corresponds
to one of the facets of Core(G),° meaning that A is critical. For example, consider the
set A ={(0,1,1),(1,1,1),(0,0,1)} in Panel (b) of Figure 4. We have G~ (A) = {u1,us},
A ={(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0)}, and G~*(A°) = {us, us, us, ug, uz }, so A is
both self- and complement-connected. Therefore, A is critical.

The assumption P(ug) > 0, for all u, € U, merely ensures that there are no redundant
elements in Y. Any wuy with P(ui) = 0 can simply be removed from U and B together with
all its edges. In turn, as we show next, the assumption that B is connected is substantive.

Our second result characterizes the implicit-equality sets.

Lemma 2. LetU = {uy,...,ux} andY = {y1,...,ys} be finite sets, and G : (U,24, P) = Y
a non-empty random set with a bipartite graph B. Let ) = U1L:1 Y, be the finest partition of
the outcome space such that Yy N Yy = @ and G~ () NGH(Y) = @, for all k # 1. Then,
A is an implicit-equality set if and only A =J;cp, Vi for some Lo C{1,...,L}.

That is, (J))L | are the “basic” implicit-equality sets, satisfying u(Y)) = Cg())), for all
ju € Core(G). These constraints are linearly dependent since >, (V) = S, Ca () = 1,
so any single one of them can be omitted without loss. The sets ), are easy to detect in
practice: The graph B “breaks” into L connected components B; with vertices V(B;) =
(Y, G71())) and edges E(B;) = {(u,y) € GY()) x YV, : y € G(u)}. For example, in Panel

6See, e.g., Theorem 8.1. in Schrijver (1998).
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(a) of Figure 4, the implicit-equality sets are {(0,0)}, {(1,1)}, and {(1,0),(0,1)}. In panels
(b)—(c), the graph B is connected, so there are no implicit-equality sets.

Combining Lemmas 1 and 2 yields our main result, characterizing the smallest CDC.

Theorem 1. LetU = {uy,...,ux} andY = {y1,...,ys} be finite sets, and G : (U,24, P) =
Y a non-empty random set with a bipartite graph B and containment functional Cg(-).

Suppose P(uy) > 0 for all uy, € U. The following statements hold.

1. Suppose B is connected. Let C* denote the class of all critical sets, as in Lemma 1.
Then,
Core(G) ={pu e M : u(A) > Cg(A), VA € C*}.

Moreover, C* is the smallest CDC.

2. Suppose B can be decomposed into connected components, (B;)E,, as in Lemma 2. Let

C; denote the class of all critical sets in By, as in Lemma 1. Then,
Core(G) = {u e M : u(A) > Cg(A), VA€ C}, u(Y) =Ca(), Vie{1,...,L}}

Moreover, U1L=1 C; U, is the smallest CDC' (up to removing a single arbitrary Y,).

This result has two key implications. For future reference, we state the first implication

as a corollary. Recall the discussion in Section 3.1.

Corollary 1.1. For anyx € X and 0 € ©, let S(x;0) denote the support and C*(x;0) denote
the smallest core-determining class of the random set G(U,x;0), conditional on X = x. If

S(z;0) = S(a',0") for some 0,0 € © and x,2' € X, then C*(x;0) = C*(a;¢').

That is, the smallest core-determining class only depends on the support of the underlying
random set. As Gu et al. (2022) point out, in discrete-outcome models, the parameter space
can typically be partitioned as © = U%:l O, with ©,, N ©;, = @ for m # [, so that

S(z;0) = S,(z) for all 0 € ©,,, for each m € {1,...,M}. Then, C*(z,0) = C},(x) for all
0 € ©,,, so the sharp identified set for # can be expressed as
M

Oy = | {0 € O : Prix=a(A) = Cawan(A), forall A€ Cp(x), v € X}.

m=1

Additionally, it is often the case that S(x;0) = S(2';0) for all z,2’ € X, all § € ©,,,. Then,
C*(x,0) =C;, for all € ©,, and all x € X, so the sharp identified set for 6 is

M
Oy = U {0 €0,,: egscsei}(lf (PY‘X:w(A) — C(;(U7x;9)(A)) >0, forall Ae C,*n} )

m=1
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Examples in the following section illustrate.

The second key implication of Theorem 1 is that the smallest CDC can be computed by
checking the connectivity of suitable subgraphs of B. This feature allows us to devise an
algorithm that avoids the major computational bottleneck of checking all 2%/ — 2 candidate

inequalities for redundancy. Further details are provided in Section 4.

3.4 Discussion and Applications

In this section, we apply Theorem 1 to characterize sharp identified sets in Examples 1-3.
We show that the smallest CDC often leads to a much more tractable characterization of
the sharp identified set and only needs to be computed a few times across the values of
and X. In some settings, even the smallest CDC is too large to be practically useful, so we
consider additional restrictions on the structure of the model’s correspondence to simplify
the analysis without losing sharpness. Examples 2 and 3 consider instrumental variables.
The online appendix contains additional applications to discrete choice with endogeneity and

directed network formation.

Example 1 (Continued). First, suppose d; < 0 for all j, so firms compete with each other
upon entering the market.” For N = 2, the partition of the space of latent variables is
illustrated in Figure 1, and the corresponding bipartite graph is in Panel (a) of Figure 4.
While the regions in the partition and their corresponding probabilities change with the
values of 6 = ((aj,éj);yzl,’y), the bipartite graph remains the same as long as all §; < 0.
Therefore, the smallest CDC only needs to be computed once. The same conclusion applies
when «;(x) and §;(z) are functions of exogenous covariates, as long as d;(z) < 0 for all j =
1,...,N,as. x € X. Assuming that U = (g1,...,ey) and X are statistically independent,

the sharp identified set for 6 can be expressed as
@0 = {9 € O : eSSiIlerX (Py|X:x(A) - CG(U,x;0)|X:x(A)) 2 0, for all A S C*}

In this model, the set of Nash Equilibria can only contain equilibria with the same number
of entrants, n € {0,1,..., N}, so the outcome space can be partitioned accordingly, J =
UT]Y:O V., and the bipartite graph B breaks down into N disjoint pieces. This property
dramatically reduces the CDC, because all sets of the form A = U;V:() A, where A, C V,,
are redundant.® Table 1a summarizes the results for N € {2,...,6}. Although the CDC is

substantially smaller than the power set of the outcome space, it quickly becomes intractable.

"See Berry (1992) for a detailed discussion and microfoundation.
8This fact follows from Theorem 1 or, alternatively, Theorem 3 from Chesher and Rosen (2017) or Theorem
2.23 from Molchanov and Molinari (2018).
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Next, suppose 9; > 0, which may be interpreted as that the firms are forming a coalition
or a joint R&D venture. In this case, the set of Nash Equilibria only contains equilibria with
different numbers of entrants. As before, whereas the relevant partition of the latent variable
space and the corresponding probabilities change with 6, the bipartite graph stays the same
as long as all 6; > 0 and the CDC only needs to be computed once. Table 1a summarizes the
results for N € {2,...,6}. As before, even the smallest CDC quickly becomes intractable.

If the sign of ¢; is ez ante unknown, the parameter space © can be partitioned into
M = 3N regions Oy, ...,0,, according to d; < 0,d; = 0, or §; > 0 for each j, and the CDC
should be computed separately for each region. For typical payoff specifications, §; does
not depend on any exogenous characteristics x, so the support of the random set G(U, z;6),
conditional on X = z, does not depend on .

The analysis can be simplified by restricting firm heterogeneity. For example, suppose
that (i) there are two types of firms such that all firms within each type are identical,
including the unobserved cost shifters; (ii) the profit functions depend only on the numbers
of entrants of each type but not their identities.” Specifically, suppose the profit of firm
je{l,...,N} of type t € {1,2} takes the form

ar+as(Nj(Y) + Ni(Y)) +e1 t=1

Bi+ BN} (Y) + BNF(Y) +e2 t =2,

where N;(Y) is the number of entrants of type t other than firm j. Suppose aq, 32,83 < 0
and (3 > (5. With 3 = s, this is a direct simplification of the fully heterogeneous model
discussed above. With f3 > (35, the firms compete in an asymmetric manner (e.g., type-1
firms are large and type-2 firms are small). With this payoff structure, the outcomes can be
grouped together by the number of entrants of each type. Letting N* denote the number of
potential entrants of type t € {1,2}, the outcome spaceis Y = {0,1,..., N'}x{0,1,..., N?},
which leads to much simpler CDCs. Table 1a shows that the smallest CDC remains tractable

for different compositions of firm types. Three or more types can also be accommodated. Il

Example 2 (Continued). For 7' = 2, the relevant partition of the latent variable space is
given in Figure 1, and the corresponding bipartite graph in Panel (b) of Figure 4. As long
as x +— Ty(x) is strictly increasing, the structure of the bipartite graph does not depend on
0, so the smallest CDC needs to be computed only once. Let Z € Z denote an excluded

9A version of this model with only one type leads back to Bresnahan and Reiss (1991). The model with
two types was proposed by Berry and Tamer (2006) and also studied in detail by Beresteanu et al. (2008),
Galichon and Henry (2011), and Luo and Wang (2018).
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Heterogeneous firms

N 2 3 4 5 6
Total 14 254 65,534 10° 10%?
Smallest; §; < 0 4 15 94 2,109 106
Smallest; d; > 0 5 14 23,770 — —
Two types of firms
(N',N?) (1,1) (2, 2) (2, 4) (2, 7) (6, 6)
Total 14 62 32,766 108 1014
Smallest; 3 = (2 5 11 17 26 35
Smallest; B3 > B2 5 14 33 57 200

(a) Entry games in Example 1.

T 2 3 4 5 6 7 8 9 10
Total 30 65,534  10° 1019 1038 107 10%* 10398 10616
Smallest 10 22 46 94 190 382 766 1,534 3,070

(b) Dynamic binary choice model from Example 2.
Table 1: Total number of inequalities and size of the smallest core-determining class.

Note: Symbol “—” indicates that Algorithm 3 implemented in Julia did not finish within 1 minute.

instrumental variable independent of U. Then, the sharp identified set for € is
Op={0€0O essinf,c.z P(Y € A|Z=2)— P(GU;0) C A) >0 for all A€ C*}.

In this example, the bipartite graph B that corresponds to the model’s correspondence has a
simple structure: Each vertex u; has exactly two neighbors, which correspond to z; € {0, 1}.
As a result, while the power set of the outcome space has cardinality 22”1, the smallest CDC
grows proportionally to 27. Table 1h summarizes the results for 7" € {1,...,10}.

In more elaborate dynamic oligopoly models, discussed by Berry and Compiani (2020),
one can adopt a type-heterogeneity assumption similar to the one in Example 1 to keep the

analysis tractable. The details are left for future research. |

Example 3. (Continued) The parameter of interest is the joint distribution of potential
outcomes, § = Py, with a known support Sy«. Since the support of the random set G(Y, D)
does not depend on 6 or Z, no partitioning of the parameter space is required, and the

smallest CDC needs to be computed only once. Moreover, since Z is independent of Y*,
Op={0 =Py~ : Py+(A) > esssup,.z P(G(Y,D) CA|Z = z), for all A € C*},
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Unrestricted outcome response

D=2\ |V 2 3 4 5 6 7 8
Total 16 512 65,534 107 101 1014 1019
Smallest 8 42 204 910 3,856 15,890 64,532

Monotone outcome response

DI\ V]| 2 3 4 5 6 7 8
2 4 12 36 124 468 1836 7300
3 6 33 220 1,719 14,002 114,349 —
4 8 82 1,126 18,087 297,585 — —

Monotone and concave outcome response

DI\ |V 2 3 4 5 6 7 8
3 4 17 81 504 3,470 25,689 194,074
4 4 17 110 973 10,106 121,755 —

Table 2: Core-determining classes in the potential outcomes model from Example 3.

Note: Symbol “—” indicates that Algorithm 3 implemented in Julia did not finish within 1 minute.

where C* denotes the smallest CDC.""

Let us now examine the size of C*. First, consider the model without any restrictions
on the support of Y*. The corresponding bipartite graph (e.g., Panel (c) of Figure 4)
is connected, so there are no implicit-equality sets, and all critical sets can be described
analytically. Unions of elements of the support of G(Y, D) are “lattice-shaped” sets A =
By x By--- x Bjp|, where each B; C Y (but not necessarily singleton, as in Figure 2).
If at least two of the sets B, are strict subsets of ), any configuration of the remaining
|D| — 2 sets By leads to a critical set A. If By C Y for some d, and By = ) for all
d' # d, the corresponding Artstein’s inequalities restrict only the marginal distribution of
the Y}, so it suffices to consider singleton B;. Thus, the total number of critical sets is
2@2 ('f') (21 — 2)F +-|Y||D|. Panel (a) of Table 2 provides some examples with |D| = 2.

Next, consider imposing constraints on the outcome response function d — Y. Suppose
D = {di,...,dp} is totally ordered. Then, for example, setting S.. = {y* € YPL: g <
Yooq foralld = 1,...,|D| — 1} ensures that d — Y} is increasing and S{¢ = SL. n{y* €

10Tn this setting, Russell (2021) compared three approaches: (i) all Artstein’s inequalities, (ii) the smallest
available CDC based on Luo and Wang (2018), and (iii) the dual approach of Galichon and Henry (2011).
Since the results of Luo and Wang (2018) did not allow intersecting conditional Artstein’s inequalities over
the values of the instrument, the author concluded that the CDC approach is never preferable. However, as
we argued above, intersecting such inequalities is valid, so (ii) is always simpler than (i). When the smallest
CDC is very large and Z is small, the dual approach of Galichon and Henry (2011) may be preferable. When
Z is rich, the CDC approach is typically simpler. See Section 4.3 for a related discussion.
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VPU sy =yl >y, — yhy foralld = 1,...,|D| — 2} further imposes that d — Y is
concave. These assumptions substantially restrict the outcome space and the corresponding
bipartite graphs, leading to much smaller CDCs. Panels (b) and (c) of Table 2 illustrate.
Finally, consider restricting the relationship between D and Z. Suppose that each unit
in the population is characterized by a vector D* = (D?),cz of potential treatments, the
observed treatment is D =) _~

of (Y*,D*). Let S C Y'PI x DIZl summarize the restrictions on the outcome and treatment

1(Z = z)D?, and the instrument Z is jointly independent

response functions. Given (Y, D, Z), the model produces a set-valued prediction for (Y*, D*)
G(Y,D,Z)={Bp(Y) x Bz(D)} NS,

where By(Y) = (Y x -+ x {Y} x ...Y) with {Y'} in the d-th component, and B,(D) =
(Dx---x{D}x...D) with {D} in the z-th component. Conditional on Z = z, the random
set G(Y, D, z) takes |Y||D| distinct values, and the corresponding realizations do not have
any elements in common. Thus, the corresponding bipartite graph breaks down into |)||D|
disjoint parts corresponding to implicit-equality sets of the form G(y,d, z). Then, Artstein’s
inequalities reduce to equalities of the form P(Y) =y, D =d)=P(Y =y, D =d|Z = z),
for all (y,d) € S, z € Z, as in Balke and Pearl (1997) and Bai et al. (2024). [

4 Implementation and Relation to Other Methods

4.1 The Master Algorithm

Algorithm 1 below summarizes the steps necessary to characterize the sharp identified set
©p as in Equation (3). Throughout, we assume that X is discrete or has been discretized

before defining the correspondence G(U, X;0). We remark on continuous X below.
Algorithm 1 (Sharp Identified Set).

1. Partition the parameter space. Fix x € X. Partition the parameter space, © =
U%Zl O©n(x), so that the support of G(U, x; ), conditional on X = z, does not change
with @ within each ©,,(x). The partition can typically be constructed analytically; for
linear specifications, the partition can also be obtained numerically using Algorithm 3
in Gu et al. (2022). (Note: this step is not always required, as discussed in detail in
Section 3.4.)

2. Partition the latent variable space. Fix m € {1,..., M} and any 6 € ©,,. Let
Y = {yi,...,ys} denote the outcome space and S(z;0) = {G1,...,Gk} denote the
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support of G(U, z;0), conditional on X = z. Partition the latent variable space as
U(x,0) = {u,...ux}, where up = {u € U : G(u,z;0) = Gy}, and define a measure
P9y on Uz 9y by Pogy(ur) = P(U € u | X = x) forall k = 1,..., K. The probabilities

P ) can be computed by resampling or numerical integration.

3. Construct the bipartite graph. Define vertices vy, ..., vgs corresponding to ) and
Us41, - - - Usyx corresponding to U(x; 6). Define the edges (vsyx, v;) for all v; € Gy, for
all k =1,..., K. Define the graph B.

4. Compute the smallest CDC. Apply Algorithm 3 below to compute the smallest
CDC, denoted C,,(x), for given m and .

5. Compute the identified set. Repeating Steps 2—4, compute the classes C,,(z) for
allz € X and m = 1,..., M to obtain ©y. (Note: In view of Corollary 1.1, for all x, ¢
such that the support G(U, z;0), conditional on X = x, stays fixed, the graph B, and
the smallest CDC, C,,(z), only need to be computed once.)

The above algorithm produces a system of conditional moment inequalities of the form
E[1(Y € A) — 1(G(U;X;0) C A)|X =z| > 0, for all A € C,,(z). If X is discrete or
have been discretized before defining G(U, X;0), the inequalities can be stacked together
and tested using a variety of existing methods, such as Andrews and Soares (2010); Romano
et al. (2014), or Cox and Shi (2023). If X is continuous, the smallest CDC approach is
only practical if the support of G(U, X;0), conditional on X = x, does not vary on z, so
partitioning © in Step 1 is not required. In such settings, the resulting system of conditional
inequalities can be tested using, e.g, Chernozhukov et al. (2013); Armstrong (2015), or
Andrews and Shi (2017).

4.2 Computing the Smallest Core-Determining Class

Recall from Theorem 1 that the smallest CDC consists of the critical and implicit-equality
sets. The latter can be found by decomposing the graph B into connected components, so
the main challenge is to find the critical sets within each connected component. Recall that
a set A C Y is self-connected if the subgraph of B induced by (A,G~(A)) is connected,
and complement-connected if the subgraph of B induced by (A¢, G71(A)) is connected. Let
N(A) = G '(A)\G™ (A) and note that B is connected if and only if N(A) # &, for all A.
Say that a critical set C'is a minimal critical superset of A if there is no critical set C' such
that A ¢ C' ¢ C. In Algorithm 2 below, we construct a correspondence F : 2¥ =t 2% that

takes a self-connected set A and returns all of its minimal critical supersets. By definition,
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such correspondence will satisfy A C C for each C' € F(A), and F(Y) = @. For a collection
of sets C, define F(C) = UaecF'(A). Then, in Algorithm 3, we iterate on F' starting from the
class C = {G(u) : u € U} until there are no more nontrivial critical supersets. Since at each
step, the algorithm finds all minimal critical supersets, it will eventually list all critical sets.

The correspondence F' is constructed as follows.
Algorithm 2 (Minimal Critical Supersets).
Input: A connected bipartite graph B and a self-connected set A.
Output: The set of all minimal critical supersets of A.

1. Initialize @ = {AUG(u) : u € N(A)}.

2. For each C' € ):

e Decompose the subgraph of B induced by (C¢, G™*(C*)) into connected compo-
nents, and denote their sets of vertices by (V3,,Vy,), for I =1,... L.

o Collect all sets C U, Vy;, for I =1,..., L, into a class P(C).
3. Return Ugc, P(O). |

This construction is motivated by two observations. First, since any critical superset
must be self-connected, it suffices to consider the sets in (). Second, if for some C' € () the
subgraph of B induced by (C¢, G~(C¢)) breaks down into several disconnected components,
any minimal critical superset must contain all but one of the Vj, parts of these components
because no other configurations can be complement-connected.

The smallest CDC is computed as follows.

Algorithm 3 (The Smallest Core-Determining Class).
Input: A bipartite graph B.

Output: The smallest core-determining class.
1. Decompose B into connected components By = (Y, Uk), E), for k=1,... K.
2. Fork=1,..., K:

(i) Initialize Cx = {G(u) : u € Uy} and Ry, = @.
(ii) For each C' € Cj: check whether C' is complement-connected. If so, add C' to Ry.

(iii) Let F denote the correspondence defined by Algorithm 2. Iterate on F'(-) starting

from C; and collect all sets along the way into Ry.
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3. Return UJ;—, Ri\V. |

We show the validity of Algorithms 2 and 3 and discuss their computational complexity
in Appendix B. A major benefit of Algorithm 3 is that it is output-sensitive: its complexity
is proportional to the size of the smallest CDC, as opposed to the total number of Artstein’s
inequalities. In general, the size of the smallest CDC may be exponential in || and ||, but
in many examples, it scales polynomially. The computational cost of Algorithm 3 will scale
accordingly, even if the total number of Artstein inequalities becomes prohibitively large.
In contrast, existing algorithms for inequality selection are based on checking each of the
Artstein’s inequalities for redundancy which quickly becomes computationally infeasible (see
Appendix B.3 for details). Algorithm 3 can be efficiently implemented in any programming
language that has a native implementation of sets (e.g., Python or Julia). For example, with
our Julia implementation and MacBook Pro with M1 chip, 10 cores, and 32GB of RAM,
in all examples considered in Section 3.4 in which the CDC has cardinality below 1,000,

computation takes only a few seconds even in large graphs. See Appendix C.1 for details.

4.3 Comparison with Other Approaches

Besides Artstein’s inequalities, several alternative approaches exist for characterizing sharp
identified sets in models with set-valued predictions. Here, we describe these approaches
in more detail and compare them in terms of computational tractability, obtaining sharp
bounds on counterfactual quantities, and inference. Recall that P(x;60) denotes the set of
model-implied distributions of the outcome Y, given X = x and a parameter value 6 € ©.
Let U = U(x;0) denote the partition of latent variable space given X = x and 6, defined in
Section 3.1. Denote Pyjx—, = (P(Y = y| X = z))yey € [0,1]? and P9 = (P(U € u| X =

7))ueu € [0,1]M1. To simplify exposition, we assume that X has finite support.

4.3.1 Artstein’s Inequalities via Core-Determining Classes

With Artstein’s inequalities, the set P(x;60) is represented as the core of the random set
G (U, x;0), conditional on X = x. The core is a convex compact polytope, and the smallest
CDC identifies its facets. When tractable, the Artstein’s inequalities approach provides a
convenient characterization of the sharp identified set and has several attractive features.

First, as illustrated in Section 3.4, additional restrictions on the model — such as instru-
ment exogeneity or outcome support restrictions — can easily be accommodated.

Second, it is theoretically straightforward to derive sharp bounds for any feature of 6y or
a counterfactual quantity, expressed as ¢(fy) for some function ¢ : © — R that is known or

point-identified from the data. If ©q is a connected set and ¢ is continuous, the sharp bounds
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on ¢(fy) are given by [minseg, ¢(t), maxico, ¢(t)], where Oy is described by a collection of
moment inequalities. These optimization problems may be hard to solve in general, but when
Oy or ¢ have a special structure, the bounds are often easy to compute. For instance, in
Example 3 above, the parameter 6 represents the joint distribution of potential outcomes, so
the Artstein’s inequalities are linear in €, and O is a convex polytope. Therefore, as discussed
by Russell (2021), sharp bounds on many interesting functionals of 6 can be expressed via
simple linear or convex optimization problems. Another class of counterfactuals for which
sharp bounds are easy to compute, considered by Torgovitsky (2019) and Gu et al. (2022),
is discussed in the next section.

Third, given a collection of Arstein’s inequalities, inference on 6, or its subvectors is well-
studied (see Canay and Shaikh, 2017, for a review). A minor complication arises when the
CDC, and thus the set of moment inequalities to be tested, changes with €. In such settings,
as discussed in Section 3, the parameter space can be partitioned into a finite number of
disjoint parts © = U%:l O, according to the support of G(U, X;60). Let qgm,n(H) be a test
for Hy,, : 0 € ©(P) N O,,, satisfying

lim sup sup sup Ep[(ﬁn,mw)] < a,
n—oo  PEPm €O (P)NOm

for some set of distributions P,,."" Then, the test ¢,(0) = SN ¢nn(0)1(6 € O,,) for
Hy : 0 € ©y(P) satisfies

limsup sup sup lEp[qAﬁn(O)] < max limsup sup sup Ep[(ﬁn,m(Q)] < a,
n—oo  PEP §cOy(P) me{l,.,M} n—oo PEP., 0€0(P)NOm

where P = ﬂf\n/[:l P,.. As usual, the confidence set may be obtained by test inversion.
Existing procedures for subvector inference (e.g., Romano and Shaikh, 2008; Bugni et al.,
2017; Kaido et al., 2019) can also be modified to accommodate situations in which the set
of relevant moment inequalities depends on #. Pursuing such modifications formally is left
for future research.

The test ¢, (0) described above has another notable feature: it takes into account the fact
that the set of moment equalities, corresponding to implicit-equality sets, may change with 6.
Knowing which moment inequalities are binding is useful for inference: When constructing
the test statistic, one can penalize violations in both directions, which generally leads to
more powerful tests. From this perspective, ¢3n(9) may be preferred to a test that simply

uses all Artstein’s inequalities without specifying which of them are binding.

1 The set P,, is typically characterized by requiring that self-normalized moment functions corresponding
to the m-th part of the partition are uniformly integrable over P € P,, and 6 € ©,,(P).
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Finally, we remark that the CDC approach identifies and excludes Artstein’s inequalities
redundant in the population.'” A separate question, which arises more broadly in moment
inequality models, is whether the redundant inequalities can be used to improve inference
procedures in finite samples. Local asymptotic analysis suggests that the answer depends
on where the researcher wants to direct the power.'” Developing a finite-sample criterion for
whether to use the redundant inequalities for inference is beyond the scope of this paper,

and it is an interesting direction for future research.

4.3.2 Aumann Expectation via Support Function

Beresteanu et al. (2011) represent P(z;6) as a conditional Aumann expectation of a suitable
random set Q(U, z;6) C Y*, given X = x. Letting Y* denote a generic integrable selection
of Q(U,x;0), the Aumann expectation E[Q(U, x;0) | X = x] is defined as the closure of the
set of conditional expectations of all of its integrable selections. If the underlying probability
space is non-atomic, Aumann expectation is a convex set, so it can be characterized via the
support function, hg(q|x=1] () = SUP,cg(Q|x—1| a’'s, defined on the unit sphere s € S C RP’I.
The support function satisfies hgjg x—s(s) = E[hq(s)|X = z], for all s € S.'* If the latter is
easy to compute, the sharp identified set can be tractably characterized by solving, for each

6 and z, a concave maximization problem in R™* as

©p={0€0O: iug(tT]E[Y* | X = 2] = E[houan(t)| X =2]) <0,z€ X as.}.  (6)
€

Beresteanu et al. (2011) apply the above characterization to models with interval-valued
outcomes and covariates and finite games with solution concepts other than PSNE. In such
settings, using Artstein’s inequalities generally does not lead to a tractable characterization

of the sharp identified set.
The Aumann expectation approach can be applied in the models studied above by setting
v (Y) = ({Y = y})yey and Q(U, X;;0) = {y*(Y) : Y € G(U, X;60)}. For checking whether
a given parameter value 6 belongs to the sharp identified set, it often remains computation-
ally tractable even when the smallest CDC is prohibitively large, and thus provides a viable
alternative. However, other aspects of the analysis become less straightforward. First, since
restricting the family of selections of Q(U, X;6) may break the convexity of the Aumann
expectation, some of the additional restrictions on the model cannot be easily accommo-

dated; See Section 5 in Beresteanu et al. (2012) for a related discussion. Second, Equation

12Guch inequalities are also redundant for plug-in estimation of the identified set ©y or bounds on any
functional ¢(6p). See Theorem 5.22 in Molchanov and Molinari (2018) for a related discussion.

13See, e.g., Example 4.1. in Canay and Shaikh (2017).

14See Theorems 3.4, 3.7, and 3.11 in Molchanov and Molinari (2018).
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(6) describes the sharp identified set with an infinite number of conditional moment inequal-
ities, for each X = z. This complicates derivations of the sharp bounds on counterfactual

quantities, as well as inference procedures (see, e.g., Andrews and Shi, 2017).

4.3.3 Mixed Matching via Linear Programs or Optimal Transport

Galichon and Henry (2011) and Russell (2021) represent P(x;0) as the set of marginal
distributions Py|x—, on Y of all possible mixed matchings between ¢ and ). A mixed
matching is a distribution 7(u,y, z;6) supported on Gr(G) = {(u,y) eU x Y : u € G(u)}
that satisfies

ZUEG_l(y) m(y,u;2,0) = Pyix—(y) forallyec), -
> yecw (W us x,0) = Py (u) for all u € U.

By Farkas’ Lemma, the existence of such 7 € RP*Ul is equivalent to

: .o\T .o\T
min, (bl 0)"n | Alw:0) > 0) >0, ®)
where A(x;0) € {0, 1} 5 0 1}V I+ and b(x;0) € [0,1]PH¥ encode the constraints
in (7) and 7(u,y,z;0) > 0 for all (u,y) € Gr(G) and >_, \carq) T(w, ¥, 230) = 1. So, the

sharp identified set for # can be characterized as
©p = {0 € O :(8) holds x € X-a.s.}. 9)

Galichon and Henry (2011) propose an alternative optimal transport formulation of the
problem: The goal is to transport P ,(u) units of good from sources u € U to Py|x—(y)
units at terminals y € ) at the minimum cost; the transportation cost is zero if y € G(u)
and one otherwise. The joint distribution 7(u,y;x,0) satisfying (7) exists if and only if
such optimal transport problem has a zero-cost solution. Modern algorithms for solving this
problem have worst-case complexity of order (|| + [U]) x |E(B)]; see, e.g., Orlin (2013)."

The mixed matching approach sometimes remains computationally tractable when the
smallest CDC is not, and thus provides another viable alternative. Additional modeling as-
sumptions can be accommodated, although less conveniently than with the CDC approach.

For example, consider imposing independence of the latent variables U € U and an excluded

15As another alternative, Galichon and Henry (2011) propose using submodular minimization. The sharp
identified set for 6 can be expressed as ©g = { € © : minacy F(;,9)(A) > 0,2 € X-a.s.}, where Fi,.9) =
PY € A|X = z) — Coa,0)(A). Since F;,9)(-) is submodular, the above minimization problem is often
feasible. For each z, ignoring the cost of evaluating Cg(,2:9)(A), the worst-case complexity of the above
problem is |V|%; see, e.g., Orlin (2009). This method appears to be generally slower than the optimal
transport approach, unless [U/| > |V|>.
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instrument Z € Z, as in Example 3 discussed in Section 3.4.'° With the CDC approach, con-
ditional Artstein’s inequalities can simply be intersected over Z. With the mixed matching
approach, to ensure that the ¢/-marginal of 7 is independent of Z, additional |Z| — 1 match-
ing constraints are required for each v € Y. When | Z| is large or infinite, the task becomes
infeasible. In terms of bounding counterfactual quantities, the mixed matching approach is
applicable if the parameter of interest can be expressed directly in terms of 7. In the context
of Example 3, Russell (2021) provides evidence the linear programs describing sharp bounds
on certain functionals of the joint distribution of potential outcomes scale favorably with |)|
for fixed |D| and | Z|. More generally, similar to the support function approach, Equations
(8)—(9) describe the identified set by an infinite number of conditional moment inequalities,
which complicates derivations of the sharp bounds on counterfactual quantities, as well as

inference procedures.

4.3.4 Minimal Relevant Partition

A closely related approach for characterizing sharp bounds on a class of counterfactuals in
discrete-outcome models using linear programming was proposed by Tebaldi et al. (2019) and
Gu et al. (2022). In Gu et al. (2022), the model consists of the factual outcome and random
set, Y € G(U,X;6), and the counterfactual outcome and random set Y* € G*(U, X;0).
The parameter of interest is a linear functional of the counterfactual distribution of Y™,
conditional on X, denoted ¢(Py+x). The counterfactual set of predictions G* is assumed to
be “coarser” than the factual set GG in the following sense: There must exist a finite partition
{uf,...,uj} of the latent variable space U such that knowing the probabilities of “cells” uj,
conditional on X = z, suffices to bound ¢(Py~«x). Following Tebaldi et al. (2019), such a
partition is called the Minimal Relevant Partition (MRP). Similarly to the mixed matching
approach, the authors show that Y € G(U, X;0), a.s., and Y* € G*(U, X;0), a.s., hold jointly
(with all random quantities defined on a common probability space) if and only if there exists
a joint mixed matching 7, (y,y*, u;) consistent with the model. That is, 7. (y, y*, u) is the
probability that a factual outcome y is chosen from the set G(uj,z;6), a counterfactual
outcome y* is chosen from the set G*(u},z;0), and u € u}, conditional on X = z. Such
a structure enables the authors to express sharp bounds on the counterfactual ¢(Py+ x+)
via two linear programs. The choice vector in these programs, (m,(y,y*,u}))yy ey zex <L,
is of dimension d = |X||V|?L, and there are p = |X|(|]Y| + 2) constraints to ensure that
7 (y, y*, uf) matches the observed conditional distribution of the outcomes and represents a

valid probability distribution and ¢ = |X||Y|?L non-negativity constraints.'”

16T match the notation in this section and Example 3, let U = Y*, X = @, and Y = (Y, D).
17See Section 2.2 in Gu et al. (2022)
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The CDC approach can also be applied in this framework, and it sometimes leads to
simpler linear programs. The idea is to treat the probabilities of “cells” in the MRP, denoted
p(uy, x), as unknown parameters. Such “cells” are typically finer than the partition U(x; 0) =
{uy, ..., u;} described in Section 3.1, so each p(ug, z) is a sum of several pu(uj, x). Artstein’s
inequalities provide linear inequality constraints on p(ug, x) of the form P(Y € A| X =z) >
> kec-(a) Muk, o), for all A € C*(z). Assuming, for example, that C*(x) does not change
with x, this approach leads to a linear program with the choice vector (u(u;,))zcx i<z of
dimension d = |X|L, p = |X|K equality constraints linking the MRP with U(xz;6), and
q = |X|(|IC*(x)| + L) inequality constraints including the Artstein’s inequalities and non-
negativity constraints. Then, if |C*(z)| is smaller than |Y|?, the resulting linear program is
easier than the one described in the preceding paragraph. In particular, this is the case in

many entry games in Example 1 and a dynamic entry model in Example 2.

4.3.5 Final Remarks

To summarize the above discussion, when the smallest CDC is manageable, Artstein’s in-
equalities approach provides a simple and universally applicable method for deriving sharp
identified sets for both structural parameters and counterfactuals. It is especially useful in
settings with excluded exogenous covariates that have rich support and are independent of
the unobservables. When the smallest CDC is very large, other methods discussed above

provide viable alternatives.

5 Extensions: Infinite Support, Dominated Selections

In this section, we extend the results of Section 3 to models in which the outcome variable
has infinite support, possibly with some additional restrictions. Such settings require a more
nuanced formal setup, which we now intoduce.

Let @ be a sigma-finite measure on ) and suppose that in addition to Y € G(U, X;0),
almost surely, the researcher wishes to impose that the distribution of Y is absolutely con-
tinuous with respect to ). For example, choosing to () to be a Lebesgue measure im-
poses that Y has a continuous distribution, and restricting the support of () corresponds
to restricting the support of Y. As in Section 3.1, we shall fix x € X and # € © and
work with the random set G (U, x;0), conditional on X = x. Notice Py < @ implies
Py|x=; < Q, for almost all x € X. For simplicity, we denote G = G(U,x;6), P = Py| x=z,
and Cg(A) = P(G(U,x;0) C A| X = z). We can then view G as a closed random set defined
on the probability space (U, F, P), where F is the Borel sigma-field on U, and taking values
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in (), B). Recall that € denotes the class of all closed subsets of Y and let M denote the
set of all probability distributions on (), B) absolutely continuous with respect to Q.
For any class of sets C C €, define

Mo (C) ={pn e Mg : u(A) < Cg(A), for all A € C}.

Our object of interest will be the set of distributions of all selections of G that are absolutely

continuous with respect to @), or, in the above notation,

M (€) = Core(G) N M.

We assume that () is chosen to ensure that Mg (€) # @, i.e, for any B € € with Q(B) = 0,
Cg(B) = 0. By analogy with Definition 2.1, we introduce the following notion.

Definition 5.1 (Q-CDC). A class C C € is Q-core-determining if Mg(C) = Mg(€).

Generally, Mg(€) C Core(G), although in many settings, the two sets are equal. The

following example illustrates.

Example 4 (Dominated Selections). Let & = [0,1]*> and ) = [0, 1] both be endowed with
Borel sigma-fields. Let U = (Uy, Us) be a pair of random variables with a joint distribution
P supported on S C Sy = {(u1,us) € [0,1)> : u; < uy}. Consider a random closed set
G : (0,12 = [0, 1] defined by G(U) = [Uy, Us].

Depending on P, the random set G may have only continuous selections or a full menu
including continuous, discrete, and mixed selections. For example, if P is any continuous
distribution will full support Sy, the random set G can be arbitrarily narrow with positive
probability, so it only has continuous selections. That is, Core(G) = M, (€) with A being the
Lebesgue measure. Alternatively, suppose Uy = U; + 1/ K, P-almost-surely, for some K € N.

Then, for example, Y = U; is a continuous selection of G, and Y’ = Zf;()l %I(Ul €

[%, k—;:l)) is a discrete selection of GG. In this case, taking @) to be the Lebesgue measure on
[0,1] will meaningfully restrict the set of selections. [

Given the measures ) and P, each set A € B can be associated with an equivalence
class [A] with A’ ~ Aif A = A’, Q-a.s., and G~ (A) = G (A’), P-a.s.. For the purpose of
describing the core, all sets A € [A] are equivalent. Therefore, we define the critical and

implicit equality sets as follows.

Definition 5.2 (Critical and Implicit-Equality Sets). A set A € € is critical if Mg (€\[A]) #
Mg(€). A set A e &\{Y, D} is an implicit equality set if 1(A) = Ca(A) for all p € Mg(C).
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Since the containment functional is uniquely defined by the family of closed sets €, it
is natural to think of a representative closed set A € € in each equivalence class [A]. In
what follows, we write A instead of [A] and speak of sets instead of equivalence classes, for
simplicity. For any sets A, B € B, we say that “A = B, Q-a.s.,” if Q((ANB°)U(BNA°)) = 0.
For any sets A, B € F, define “A = B, P-a.s” similarly.

The results in Section 3 relied on connectivity of the bipartite graph B or its subgraphs.
A direct analog of the bipartite graph B in the present setting is the graph of G:

Gr(G) ={(u,y) eU x Y :y € G(u)}.

However, requiring that this set be connected is not sufficient for our purposes, because the
connections have to be “detectable” by the measures () and P. Recall that the lower and

upper pre-images of G are defined as
G (A)={uecl:Gu) C A}; G M A) ={ueld:Glu)n A+ a}
and G~ (A) C G71(A), for each A C Y. Further, let
NA) =G A\NG (A) ={ueld :Gu)NA+#a, Gu)NA®+}

be the set vertices u € U that connect A with the rest of the graph Gr(G). We define

connected graphs as follows.

Definition 5.3 (Connected Graph of a Random Set). A random set G has a connected
graph if (i) Q(G(u)) > 0, for P-almost all u € U; For any A € €\Y with Q(A) > 0: (i)
P(N(A)) > 0, and (iit) For almost all w € N(A), Q(G(u) NA) >0 and Q(G(u) N A°) > 0.

In the finite setting studied in Section 3, connectivity amounts to N(A) # &, for all A,
while G(u) # @, for all w € U, and G(u) N A # @ and G(u) N A® # @, for all u € N(A),
hold by definition. Assumptions (i)—(iii) above additionally require that the respective sets
are “detectable” by the measure Q. If P(N(A)) = 0, for some A, the outcome space can be
partitioned as Y = Y, UY,, with Y = A and ), = A, so that G=H(Q)NG~(%s) = 9, P-as..
That is, the correspondence G “breaks” into two P-a.s. disjoint components, which can be
analyzed separately. In complete models, G is singleton-valued, so Q(G(u)) = 0 is possible
even if G(u) # @, and G71(A) = G~ (A) and N(A) = &, for all A C Y, so the set Gr(G)

breaks into a potentially infinite number of disjoint pieces. The following example illustrates.

Example 4 (Continued. Graph-Connected Random Sets). Assume the same setup as above.

Let @ be the Lebesgue measure. Let P be any continuous distribution supported on Sy. For
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P-almost all u, the set G/(u) has positive length, and so Q(G(u)) > 0. Consider, for example,
a set A = [a1,as] for some 0 < a; < ay < 1. Then, N(A) = {(u1,uz) € S : u; € A,jug >
as}U{(u1,ug) € S :uy < ay,us € A}. For P-almost all u € N(A), the segments G(u)NA and
G(u)NA® have positive length and thus Q(G(u)NA) > 0 and Q(G(u)NA°) > 0. Therefore, the
graph of GG is connected in the sense of Definition 5.3. Alternatively, suppose P is supported
on the union of sets S1 = {(u1,u2) € Sp : ug < 1/2} and Sy = {(ug,u2) € Sy : uy > 1/2}.
Then, G7([0,1/2]) = S; and G7'([1/2,1]) = Sy. Then, the graph of random set G is not
connected in the sense of Definition 5.3. In this case, the restrictions Gy : S; — [0,1/2] and

Go : Sy — [1/2,1] can be considered separately. |
Finally, the notions of self- and complement-connected sets extend as follows.

Definition 5.4 (Self- and Complement-Connected Sets). Let G be a random set with a
connected graph, in the sense of Definition 5.5. A subset A € € is self-connected if there do
not exist Ay, As satisfying A = A1 U Ay and Ay N Ay = &, Q-a.s., and G~ (A) = G~ (A;) U
G~ (Ay), P-a.s.. A subset A € € is complement-connected if there do not exist Ay, Ay
satisfying A° = AU AS and A{ N AS = &, Q-a.s., and G (A{) NGL(AS) = @, P-a.s..

5.1 The Smallest Core-Determining Class

We are now ready to state the main results of this section, which are direct extensions of

Lemmas 1 and 2 and Theorem 1.

Lemma 3 (Critical Sets). Let G : (U, F,P) = (V,B,Q) be a random closed set with a

connected graph. A subset A € € is critical if and only if it is self- and complement-connected.

Lemma 4 (Implicit-Equality Sets). Let G : (U, F, P) =2 (V,B,Q) be a random closed set.
Suppose there is a countable partition Y = Ul>1 Vi such that YV; NY; = &, Q-a.s., and
G Y)NG YY) =2, P-a.s., for all i # j, and such partition cannot be further refined.
A subset A C'Y is an implicit-equality set if and only if A = UleLA Y, for some L, C N.

Theorem 2 (Smallest CDC). Let G : (U, F,P) = (V,B,Q) be a random closed set.

1. If G has connected graph, the class C* of all critical sets, characterized in Lemma 3, is
the smallest CDC.

2. If the outcome space Y can be partitioned as in Lemma 4, and C/ denotes the class of
all critical sets in Y, characterized in Lemma 3, then C* = Uz>1 C; U is the smallest

CDC, up to removing a single arbitrary Y.

31



Corollary 1.1 and the subsequent discussion also apply in continuous-outcome settings.
When the support of G(U, x; ), conditional on X = z, is infinite, the smallest CDC, C*(z, 6)
contains an infinite number of sets, for each x. This fact implies that using all of the
modeling implication for estimation and inference on #, may be challenging.'® On the other
hand, certain functionals of the form ¢(6y) € R, may admit relatively simple sharp bounds.
In such cases, Theorem 2 can be used to “guess” the sharp bounds, but to prove sharpness,
it is typically easier to explicitly construct a data-generating distribution that attains the

bounds. The following examples illustrate.

5.2 Examples

The first example studies a model with interval-valued data. For related results, see Beresteanu
et al. (2012), Section 2.3 in Molinari (2020), and Manski (1994).

Example 5 (Interval Data). Let Y* € ) denote a continuous outcome variable (e.g., income)
and X € X denote covariates (e.g., socio-economic characteristics). Suppose the researcher
does not observe Y* directly but observes continuous random variables Y7, Yy € ) such that
Y*e G(Yr,Yy) = [V, Yu] (e.g., income bracket). For simplicity, suppose X is discrete, and
Y = [y, 7] for some known y < 7. Also, suppose that P(k(z) < Yy —Y, <R(z)| X =2) =1
for some known functions k(z) and ®(x). The basic parameter of interest is 0y = Py« x.
Consider the random set G(Y7,Yy), conditional on X = x. Since Y* is continuous, we
take ) equal to the Lebesgue measure on ). Since the conditions of Definition 5.3 are
satisfied, the random set GG is graph-connected, and there are no implicit-equality sets. In
turn, the critical sets can be determined as follows. The support of G is the set of all closed
intervals in [y,7]. The only sets that satisfy A = G(G~(A)), i.e., can be expressed as unions
of elements of the support of G, are finite or countable unions of disjoint intervals included
in [y,7], where each interval has a length of at least x(z). Consider a union of the form
A= A1UA; = [a,b1] U [ag, by] with b; — a; > k(x) and ag > b;. Then, A; N A; = @ and
G~ (A) =G (A))UG (Ay), P-a.s, meaning that A is not self-connected. A similar argument
applies to any other collection of disjoint intervals, which means that all critical sets must
be contiguous intervals. Next, consider an interval A = [a,b] with y < a < b < 7 and
b—a > K(z). Then, the sets A; = [y, b] and Ay = [a,7] satisfy Af U A5 = A°, A{NAS = @,
and G~ (A{)NGH(AS) = @, P-a.s., meaning that A is not complement-connected. Note that
intervals of the form [y, b] and [a, 7] are complement-connected. Thus, the sharp identified

set for 6y is completely characterized by inequalities of the form P(Y* € A|X = z) >

BHowever, e.g., Mourifié and Wan (2017) show that the local average treatment effect assumptions in a
model with continuous outcomes can be tested using the procedure of Chernozhukov et al. (2013).

32



P([YL,Yy] C A| X = z) for all sets A in the class
C*(z) ={ly,a],[a,7] 1y + £(v) <a <7 —£K(x)} U {la,b] : £(x) <b—a<F(2)},

for all x € X. If kK or K do not depend on z or its subvector, the corresponding inequalities
can be intersected. Importantly, Theorem 2 implies that each of the above inequalities is
also necessary to guarantee sharpness.

Next, suppose the parameter of interest is the conditional CDF ¢(y) = Fy«x=z(-). The

sharp identified set for ¢(6y) is contained in the “tube” of non-decreasing functions satisfying

[0, Fy, | x—u(r(2))] y € [0, K(x))
Fyex=(y) € § [Fyyix=:(¥), Fyyx=2(v)] y € [y + £(2),7 — £(2)]
[Fyyix=(U — &(2)),1]  y€ @ —r(2),7]

<

The upper and lower bounds correspond to valid CDF’s and are sharp. However, not all
CDF's inside the tube are included in the sharp identified set, because valid candidates must
also satisfy

Fyex=2(b) = Fy+x=(a) =2 P(Yy 2 a,Yy < b| X =) (10)

for any a, b such that k(z) < b—a < R(z). This rules out CDF's that increase “too little” over

any such interval. Importantly, Theorem 2 implies that no other restrictions are required.
Finally, suppose the parameter of interest is the difference between conditional quantiles

#(00)= qyv+x=2(T1) — @y+|x=2(T2), for some 7, > 75. Each of the quantiles is sharply bounded

by the corresponding quantiles of Y;, and Yy, which may suggest that

o(0o) € [max{07QYL|X:m(Tl) - C]YU|X:m(7'2)}, QYU|X:m(Tl) - qYL|X::L'<7-2):| .

However, the upper bound may not be sharp due to (10) being violated at a = gy+|x—2(72),

b = qy+|x=2(71). Instead, it can be verified that the sharp upper bound is
max{b — ala > qv,|x=2(72),b < @vy|x=2(T1), 1 — T2 = P(Yp, > a,Yy < b|X =2)}.

Bounds on other functionals can be obtained similarly. [

Our final example is a model of ascending auctions studied by Haile and Tamer (2003),
Aradillas-Lépez et al. (2013), Chesher and Rosen (2017), and Molinari (2020).

Example 6 (Ascending Auctions). Consider an ascending auction with N bidders. Let
V; € [0,7] and B; € [0,7] denote the valuation and bid of player j, and V.5 and B;.y denote
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the corresponding j-th smallest valuation and bid. Suppose the bidders are symmetric in the
sense that (V, ..., Vy) are exchangeable. Let F' € F denote the joint distribution of ordered
valuations V' = (Vi.n, ..., Va.n) supported on S = {v € [0,7)" : v; < -+ < vy}, where
the class F summarizes the assumptions on the information structure. Suppose there is no
reserve price and minimal bid increment. Suppose the researcher observes the two largest
bids (By_1.n, By.n) and wants to learn about features of F. Following Haile and Tamer
(2003), suppose that bidders (i) do not bid above their valuation and (i) do not let their
opponents win at a price they would be willing to pay. Then, (i) implies Bj.ny < V}.n for all
Jj, and (ii) implies Vy_1.xy < By.y. Thus, the model produces a set-valued prediction for the
bids, given valuations, G(V; F) = [0, Vy_1.n] X [VN—_1.n, V| N'S. As long as F' is supported
on S, the support of G(V; F') does not depend on F.

It can be verified that the random set G(V; F') has connected graph, so by Lemma 4,
there are no implicit-equality sets. In turn, the class of all critical sets is vast. In particular,
it includes all lower sets A; = {(v1,v2) € [0,9]* : v1 < K(v2)}, for some weakly decreasing
function k : [0,0] — [0,7]; all sets of the form Ay = {(vi,v2) : v1 < a,vy € [b, ]}, for
some a,b,c € [0,0] with b < ¢; all sets of the form A; N As; and all countable unions of
the resulting family of sets. As a result, the sharp identified set for F' is intractable in
practice. However, certain functionals of F' admit tractable bounds. Aradillas-Lopez et al.
(2013) show that in ascending auctions, if the transaction price equals the largest of the
reserve price and second-highest valuation, the expected profit and bidders’ surplus under
counterfactual reserve prices depend only on the marginal distribution of the two largest
valuations: ¢(F) = (Fy_1.n, Fn.n). The sharp identified set for ¢(F') is given by

Qg ={o(F): F € F, P((Bn-1:n, Bnn) € A) 2 Pr([0, V1] X [V, Viv] € A) VAL

To make progress, Aradillas-Lopez et al. (2013) assume that the valuations are positively
dependent in the sense that the probability P(V; < v|#{j # i : V; < v} = k) is non-
decreasing in k for each ¢ = 1,..., N. Under the above assumption, the authors show
that Fy.y € [Fn_1.8, On—1.8(Fn_1.8)Y], where ¢n_1.x ¢ [0,1] — [0,1] is a known strictly
increasing function that maps the distribution of the second-largest order statistic of an
i.i.d. sample of size N to the parent distribution. With this assumption, the set ®; can
be characterized more concretely. The Artstein’s inequality corresponding to the set A =
S N [0,v] x [0,7] implies Fn_1.xy(v) < Gy_1.5(v); the set A = S N[0,7] x [v,7] implies
Fy_1.ny(v) 2 Gn.n(v); and the set A = SN [0,v] x [0,v] implies Fy.n(v) < Gn.n(v).
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Combining these inequalities with the bounds on Fy.y yields

Gy.n(w) < Fy_1.n(v) < Gyo1.n(v);

on-1.8 (G ()Y < Fyn(v) < Grn(v).

By constructing suitable joint distributions F' € F, it is possible to show that both upper
bounds and both lower bounds can be attained simultaneously, so the bounds are sharp.
As in the preceding example, although the bounds on Fy_1.y are sharp, the corresponding
“tube” of functions includes many CDFs that do not belong to the sharp identified set.
Specifically, the set A = SN [a, 7] x [0,b] for b > a corresponds to the Artstein’s inequality
Fn_1.n(b) — Fy_1.n(a) = P(By-1.xv = a,By.y < b), which rules out CDFs that do not
increase sufficiently between a and b. This fact has immediate implications for studying,

e.g., optimal reserve prices. The details are left for future research. [ |

6 The Importance of Selecting Inequalities

In this section, we provide evidence that selecting Artstein’s inequalities informally may lead

to a substantial loss of identifying information.

Dynamic Entry In the first simulation exercise, we revisit the dynamic entry model of
Berry and Compiani (2020), which is our Example 2. In this setting, even with only a few
time periods, the total number of Artstein’s inequalities is prohibitively large; see Table 1b.
To this end, the authors suggest using inequalities that should intuitively be informative
about the structural parameters. Specifically, they consider the events: “the firm enters at
least once,” “the firm exits at least once,” and “the number of firms in the market does not
change for K consecutive periods.” Below, we compare the resulting identified sets with the
sharp identified set for 7' = 5 made feasible by computing the smallest CDC.

The true parameter values are set to 7 = 0.5, v = 1.5, and p = 0.75, and the sample
size is 10,000. Further details of the simulation design are provided in Appendix C. Figure
5 presents the results. The grey shaded regions represent projections of the sharp identified
set in the model with 7" = 2; the orange regions combine the inequalities for T" = 2 with the
hand-picked inequalities of Berry and Compiani (2020) for T'= 5; and the light-blue regions
correspond to the sharp identified set with 7' = 5. Evidently, the intuitive inequalities do not
come close to using all of the identifying information in the model with 7" = 5. In numerical
terms, the orange (“intuitive”) identified set for (m,~,p) is roughly 26% smaller than the
grey one, while the blue (sharp) identified set is 97% smaller.
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Figure 5: Projections of identified sets in the dynamic entry model from Example 2.

Static Entry In the second simulation exercise, we aim to quantify how much identifying
information would be lost if the researcher used alternative sets of inequalities instead of the
smallest CDC. We revisit the market entry model from Example 1 with N = 3 players and
strategic complementarities, §; > 0 for j € {1,2,3}. In this setting, there are 254 nontrivial
Artstein’s inequalities in total, while the smallest CDC contains only 14 inequalities. A
comprehensive experiment would require trying all sets of 14 inequalities out of 254 (~ 10%*
options), which is computationally infeasible. As an approximation, we sample 14 out of
254 inequalities at random 15,000 times and compute the corresponding identified sets us-
ing a fixed grid of points. For each set of inequalities, we compute the relative size of the
sharp identified set to the simulated one as the ratio of the counts of grid points that satisfy
the respective inequalities. We simulate 5,000 observations with parameters a; = —0.4 and
d; = 0.4 and unobservables ¢; distributed i.i.d. N(0,1), for j € {1,2,3}. Within the regions
of multiplicity, we select asymmetric equilibria (e.g., (1, 1,0) instead of (0,0,0)) with proba-
bility 0.9 to ensure that each outcome is realized with a non-trivial probability. The result-
ing distribution over {(1,0,0),(0,1,0),(0,0,1),(1,1,1),(0,0,0),(1,1,0),(1,0,1),(0,1,1)} is
(0.08,0.08,0.08,0.25,0.25,0.09, 0.09, 0.08). The grid for (a,d) is [-0.5, —0.2] x [0.3,0.5] with
50 values along each dimension.

Figure 6 presents the results. The left panel depicts the sharp identified set, and the right
panel shows the distribution of the relative size of the sharp identified set across simulations.
The median relative size of the sharp identified set to the simulated ones is 38%, meaning
that in half of the simulations at least 62% of the identifying information is lost. This
result suggests that the smallest CDC is a very specific collection of inequalities and using

alternative sets of inequalities is likely to result in a substantial loss of identifying information.
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Figure 6: Size of the sharp identified set relative to identified sets constructed with the same
number of inequalities in a market entry model with complementarities in Example 1.

7 Conclusion

Artstein’s inequalities provide a convenient way to describe sharp identified sets in a large
class of partially-identified econometric models. However, the total number of inequalities
is often prohibitively large in practice, while many of them are redundant in the sense that
excluding them from the analysis is without loss of identifying information. In this paper,
we derived the smallest possible set of inequalities that suffices for sharpness, provided an
efficient algorithm to compute it, and used the proposed approach to obtain tractable char-
acterizations of the sharp identified sets in several well-studied settings. The results apply far
beyond the examples considered in the paper. Determining which moment inequalities are

more informative for inference in finite samples is an important question for future research.
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A Proofs from the Main Text

Proof of Lemma 1 The “Only if” direction follows from the arguments in Section 3.2:
if a set A is not self-connected, the first argument applies; if A is not comlement-connected,
the second argument applies. For the “If” direction, let v € M with v(y) > 0 for all
y € Y. Let A be a set that is both self-connected and complement connected. Define a map
4 U x2Y —[0,1] via

u(G(u)ﬂBﬂAC)l(u € N(A)) +

Ta(u; B) = v(G(u) N A°) W

L(u ¢ N(4))

Note that u € N(A) ensures G(u)NA® # @. By standard properties of measurable functions,
the map u — m4(u; B) is measurable, for each B. By construction, for each fixed u, ma(u;-)
is a probability distribution on ) supported on G(u). That is, 74 is a Markov kernel. Note
that ma(u, B) > 0 if and only if u € G7(B) U N(B), and m4s(u,B) = 1 for u € G~ (B).
Averaging over u yields a probability distribution pa(B) = >, o, 7a(u; B)P(u) satisfying

B v(G(u) N BN A " v(G(u) N B) .
MA(B)—CG(B)—FUEN(BX:)ON(A) O P( )+UEN(BX);N(A)C—V( ) P(u).

(A.1)
In particular, pa(A) = Cg(A). We will show that for any B # A, the second or the third
summand (or both) in (A.1) must be positive, so ps(B) > Cg(B).
Since G is connected, it must be that N(B) # @, for all B. If N(B) N N(A)® # &, the
last summand in (A.1) is strictly positive and the conclusion follows. It remains to consider
N(B) C N(A). There are three possible cases:

1. ANB # @ and AN B® # &. Since N(B) C N(A), in particular, G~ (A) N N(B) = 2.
That is, all u such that G(u) C A satisfy either G(u) N B = @ (i.e., G(u) C B°) or
G(u) C B. Thus, the sets Ay = ANB, Ay = AN B¢ satisfy AjUAy; = A, AiNAy = &,
and G~ (A;) UG (As) = G~ (A), which contradicts the assumed self-connectivity of A.
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2. ANB =g, or A C B°. Then, BNA® = B, so the second summand in (A.1) is positive.

3. AN B¢ =@, or A C B. Since N(B) C N(A), B is connected to the rest of the
graph only through A. That is, there does not exist u such that G(u) N (BN A¢) # &
and G(u) N B¢ # @. So, for all u such that G(u) N (B N A°) # & it must be that
G(u)NB°® = @, and for all u such that G(u)NB® # @, it must be that G(u)N(BNA°) =
@. Thus, the sets A] = BN A%, A5 = B°N A° = B¢ satisfy A° = A{ U A5 and
G7HAS) UGH(AS) = G1(A®), which contradicts the complement-connectivity of A.

Therefore, we have constructed a probability measure py € Core(G) satistying pua(A) =
Ce(A) and pa(A) > Cg(A) for all A # A. By continuity, there exists a probability measure
p such that p/(A) = Ca(A) — € for some small € > 0, while /(A) > Cg(A) for all A #
A, A € €. Such i satisfies ¢/ ¢ M(€), and i/ € M(€\A). Therefore, A must be critical.

Proof of Lemma 2 For the “If” direction, let Y be an arbitrary selection of G with a
distribution p. Since for each [ € {1,..., L}, Y € Y holds if and only if U € G~(})), it
must be that u(Y,) = P(U € G~ ()))) = Cs(Y)). By additivity of probability measures, the
corresponding equality holds for any union of sets ).

For the “Only if” direction, let A be any set other than a union of some ). By assump-
tion, each subgraph B; induced by (), G='()))) is connected, so it must be that N(A) # &.
Let v € M with v(y) > 0 for all y € Y and define a Markov kernel 7y : U x 2¥ — [0,1] as
mo(u; A) = v(ANG(u))/v(G(u)). For each u € U, mo(u; -) is a probability measure supported
on G(u) satistying mo(u; A) > 0 if and only if u € G~ (A) U N(A), with my(u; A) = 1, for
u € G~ (A). Averaging over u yields a probability distribution

po(A) = mo(u; A)P(u) = Ca(A) + Y mo(u; A)P(u).
ueU ueN(A)

Since N(A) # @, mo(u; A) > 0, and P(u) > 0 for all u € N(A), it follows that po(A) >
Cg(A), so such A cannot be an implicit-equality set. [

Proof of Theorem 1 Let C and C denote the weak and strict inclusions correspondingly.
First, suppose B is connected. Since any core-determining class must contain all critical sets,
the goal is to show that the class of all critical sets is itself core-determining. To this end, it
suffices to show that removing any non-critical set A cannot “make” any other non-critical
set A" critical, i.e., M(€\A) = M(C\A") = M(C) necessarily implies M(C\A\A") = M(C).

For each set of vertices S C V(B), let N(S) denote the set of all edges adjacent to some
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vertex in S. To each set A C ), associate a set of edges adjacent to A or G~ (A), that is,
EAa=NAUG (A) ={(u,y) e EB):yec A°oruec G (A)}.

If A is non-critical, by Lemma 1, either (i) A = A; U Ay with A; N As = @ and G~ (A) =
G (A))UG™(Ay) or (ii) A° = ASUAS with A{NAS = @ and G71(A°) = G7HAS)UG™(AS).
In either case, it can be verified that £4 C &4, for j = 1,2. For example, if (i) holds,
Ex = N(G(A)) UN (G (Ay)) UN(A9), while £4, = N(G~(A1)) UN(A2) UN(A). By
construction, N (G~ (Az)) C N (Az). Since the graph B is connected, there must be an edge
between A, and U\G~(A). That is, N (G~ (4z2)) C N(A2) and therefore €4 C Ea,. The
inclusion £4 C &4, is symmetric, and case (ii) can be considered similarly. Since in either
case, removing A is without loss as long as A; or A, are present, the fact that £4 C &y,
and £4 C &4, implies that removing a non-critical set A cannot make any other set A" # A
critical. Otherwise, we would have £4 C €4 and 4 C £4, which is a contradiction.

Next, let Y = UZL:1 Y with Y;NY; = @ for i # j, denote the finest partition of the outcome
space with the property G=();)NG~*(Y;) = @. Then, any set of the form A = U}, A; with
A; C ), satisfies G=(A) = U1L:1 G~ (4)), so it is redundant given (A4;)~, (see also Theorem
2.33 in Molchanov and Molinari, 2018). Also, since Zlel w(Yr) =1 for any p € Core(G),
any one (and only one) of the sets ), can be omitted from the CDC. Combining these facts

with the above argument applied to each connected component B; of B yields the result. B

Proof of Lemma 3 Let v € Mg with dv/dQ > 0. Let A be a set that is both self-

connected and complement connected. Define a map w4 : U x B — [0, 1] as

v(G(u) N BN A9 1(u € N(A)) + v(G(u) N B)

Ta(u; B) = (G lu) 1 A) Wl(u ¢ N(A)).

Since G has a connected graph, v(G(u)) > 0, for almost all v € U, and v(G(u) N A¢) > 0,
for almost all u € N(A). By the Robbins’ Theorem (Theorem 1.5.16 in Molchanov, 2005)
and standard properties of measurable functions, the map u — m4(u, B) is measurable for
each B € B. By construction, for each fixed u, m4(u;-) is a probability distribution on )
supported on G(u). That is, m4 is a Markov kernel. Note that m4(u; B) > 0 if and only
if w € G7(B)UN(B), and ma(u; B) = 1, for any u € G~ (B). Averaging over u yields a
probability measure p14(B) = [, ma(u; B)dP(u), satisfying

B v(G(u) N BN A " A2
ua(B) = Ce(B) + /N(B)mN(A) v(G(u) N A°) Pw) + /N(B)HN(A)C v(G(u)) (A2)

In particular, ps(A) = Ci(A) holds by construction. We will show that, for any B # A with
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Q(B) > 0, at least one of the remaining summands in (A.2) must be positive, so ua(B) >
Ce(B). The inequalities for B with Q(B) = 0 hold trivially provided that Mq(€) # &, so
such sets need not be considered.

An integral of the form [, f(w)dP(w), where f(w) > 0, is positive if and only if P({w :
f(w)>0}NS)>0. For each B C Y, the set N(B) contains “vertices” u € U that connect
B with the rest of the graph Gr(G). Since G has connected graph, P(N(B)) > 0, for all B
with Q(B) > 0. If P(N(B)NN(A)°) > 0, the last summand in (A.1) is strictly positive and
the conclusion follows. The rest of the argument proceeds exactly as in the proof of Lemma

1, with qualifiers P-a.s. and (J-a.s. added when referring to set operations in 4/ and . W

Proof of Lemma 4 The proof is nearly identical to that of Lemma 2 with the following
modifications. The measure v € Mg must satisfy dv/d@Q) > 0 and the measurability of
u +— mo(u; A) follows from the Robbins theorem, as in the proof of Lemma 3. The qualifiers

P-a.s. and Q-a.s. are added when referring to set operations in ¢ and ). [ |

Proof of Theorem 2 The proof is nearly identical to that of Theorem 1. To each set

A € €, we can associate a collection of “egdes”
Ea={(u,y) € Gr(Q) :ye A°oru e G (A)}.

Suppose G is graph-connected and a set A is non-critical. Then, it must be that either A =
AjUA; with G7(A) = G~ (A))UG™ (Ay) or A¢ = ASUAS with G71(A°) = G AS) UG (AS).
In either case, it can be verified that £4 C €4, and €4 C €4, with both inclusions being
“detectable” in the sense that Q({y : (u,y) € €4,\Ea}) > 0 and P({u: (u,y) € E4,\Ea}) >
0, for j € {1,2}. This observation implies that removing a non-critical set A cannot make any
other set A’ critical. Indeed, assuming otherwise would imply that €4 C €4 and Ex4 C &4,

which is a contradiction. [ |

B Algorithms 2 and 3

B.1 Validity

It suffices to show that Algorithm 2 identifies all minimal critical supersets of a given self-
connected set. By Lemma 1, critical sets must be self-and complement-connected. Given a
self-connected set A, the idea is to list all possible expansions of A, denoted C = AU B,
that satisfy two properties: (i) C' is self- and complement-connected and (ii) there is no
self- and complement-connected C' such that A ¢ C' C C with strict inclusions. To be self-
connected, the set C' must contain G(u) for some v € G7'(A)\G~(A). To find a minimal
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such C, it suffices to look for C' = AU G(u) for u € G"1(A)\G~(A). If the subgraph of B
induced by (C¢,G~(C®)) is connected, such C' is one of the minimal critical supersets of
A. If this subgraph “breaks” into disconnected components, denoted here by (V,,U;, &), for
l=1,...,L, then only sets of the form P, = CU U#l Y;, for some [, can be minimal critical
sets. Indeed, such P, is self-connected because each of ); must be linked with C' (otherwise,
the graph B would be disconnected), and complement-connected since the subgraph induced
by (P, G~(P,)) is precisely the remaining connected component (), U;, &). Also, any proper
subset of P, cannot be complement-connected by construction. Therefore, Algorithm 2 finds
all minimal critical supersets. That Algorithm 3 finds all critical sets follows from the

discussion in the main text.

B.2 Computational Complexity

The time complexity of decomposing the graph B into connected components using Depth
First Search is |V(B)| + |E(B)|, where |V(B)| = |Y| + [U| and |E(B)| are the numbers
of vertices and edges in B correspondingly (see, e.g., Section 3.2 in Kleinberg and Tardos,
2006). All further calculations apply within each connected component. To keep notation
simple, we assume that B itself is connected.

Let |C*| denote the size of the smallest core-determining class. Let N = maxcy |[N(A)|
denote the maximum cardinality of the set of vertices connecting a self-connected set A C Y
with the rest of the graph B, and L denote the maximum number of connected components
of the subgraph of B induced by (A¢, G~*(A¢)). These quantities are trivially bounded by
N < |U| and L < |Y| but are often much smaller and may remain bounded in large graphs.

First, consider Algorithm 2. Step 1 of the Algorithm requires reading at most N sets
from the adjacency list of B. For each of these sets, Step 2 decomposes a subgraph of B into
connected components and creates a list of at most L sets as a result. The complexity of
decomposing a subgraph of B into connected components is bounded by that of decomposing
the whole graph B. Thus, the complexity of Step 2 is bounded by N - (|Y|+ |[U/|+|E(B)|+L-
|V]). The number of minimal critical supersets of A is bounded by L-N, and each of them has
size at most |)|, so removing the duplicates in Step 3 has complexity L - N - |))|. Therefore,
the total complexity of Algorithm 2 is bounded above by N - (|Y| + [U| + |EB)| + L - |Y]).

Next, consider Algorithm 3. Step 1 has complexity |V| + [U]| + |E(B)|, as discussed
above. Step 2-(i) requires reading || sets from the adjacency list of B and Step 2-(ii) requires
checking complement connectivity for every such set, which has complexity |U|+|V|+|E(B)|,
so the the total complexity is [U| - (|U|+|Y|+|E(B)|). Let C denote the output of Step 2-(i).
Step 2-(iii) applies Algorithm 2 first to all sets A in C, and then iteratively to the resulting
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collection of sets, denoted C’. It may be the case that F'(A) N F(A") # @ for two distinct
sets A, A" € C', so computing the union F(C') = |J e F(A) requires removing duplicate
sets after each iteration. Every set F'(A) contains at most L - N sets of size at most ||,
and there are at most max (||, |C*|) elements in each C’, so the complexity of removing the
duplicates is bounded by L - N - || - max(|U|, |C*|). Since the duplicates are eliminated, at
every iteration — except possibly the first — Algorithm 2 is only applied to critical sets.
Taking stock, the complexity of Algorithm 3 is bounded by

LN -max(u|,[C"]) - (Y] + [U| + [EB)]). (B.1)

Assuming bounded L and N and |U/| < |C*|, all of which typically hold in applications, the
complexity bound in (B.1) is comparable with that of an oracle algorithm which receives

critical sets one by one and verifies that each of them is self- and complement- connected.

B.3 Connections with Existing Algorithms

One way to compute the smallest CDC (denoted as C*) is to start from the system of
all Artstein’s inequalities and remove redundant ones. There exist generic methods for
identifying redundant and implicit-equality constraints in linear systems (see, e.g., Telgen,
1983; Schrijver, 1998). In practice, such methods require solving one linear program per
constraint, so the resulting algorithmic complexity scales proportionally to the total number
of constraints. In many settings, the total number of Artstein’s inequalities is exponential in
|V| and |U|, which quickly makes the above approach computationally infeasible. In contrast,
our approach does not require considering each of the potentially redundant constraints.
Instead, it uses the additional structure of the problem (i.e., the bipartite graph) to directly
“build” the non-redundant constraints, thus substantially lifting the computational burden.

Another way to compute the smallest CDC is to find a minimal half-space representation
of a polytope given in a vertex representation (recall Section 4.3.3). The relevant polytope
is P ={Ar :m > 0,7'1 = 1}, where A is a (|Y| + |U|) x |E(B)| binary matrix, in which
each column a, € {0, 1}Y+ represents an edge e = (u,y) € E(B). Artstein’s inequalities
provide a half-space representation of P, which may contain redundant elements, and the
smallest CDC gives a minimal such representation. More generally, a minimal half-space
representation of any polytope can be computed numerically using the algorithm of Avis
and Fukuda (1991). For the so-called “non-degenerate” problems, in which every facet of
P contains exactly || + |U| vertices, their algorithm is shown to be output-sensitive: the
complexity of recovering the |C*| facets of P is O(|C*| - (|Y| + |U|) - E(B)). In our setting,
the “non-degeneracy” means that for every set A € C*, there are exactly || + |U| edges
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(u,y) € E(B) such that 1(y € A°) 4+ 1(u € G~ (A)) = 1. This requirement appears to be
very restrictive and is not satisfied in any of our examples. Although the algorithm of Avis
and Fukuda (1991) applies more broadly, it is not generally output-sensitive and often does
not scale well in practice. In turn, our Algorithm 3 applies only to polytopes associated with
bipartite graphs and computes the minimal half-space representation in an output-sensitive
manner without any further restrictions.

Algorithm 3 is also related to the problem of listing all maximal independent sets (MIS)
of vertices in a graph. A MIS is a set of vertices that are mutually disconnected, and such
that adding any other vertex would violate this condition. Tsukiyama et al. (1977) proposed
an output-sensitive algorithm for listing all MIS-s in an arbitrary undirected graph I' with a
worst-case complexity O(|MIS| x |V (I")| x |[E(I')]). In our setting, each MIS corresponds to
a set of the form (A°,G~(A)), where A C ) can be expressed as a union of elements of the
support of G (see Section 3.2). If all such A are self- and complement-connected, the set of
all MIS is the smallest CDC, and the worst-case complexity of our algorithm matches that of
Tsukiyama et al. (1977). Otherwise, Algorithm 3 finds MIS satisfying further connectivity

restrictions.

C Further Simulation Evidence

C.1 Computing Times

Tables 3 and 4 below summarize the computing times for all examples in the main text
where computation was done numerically. All computation was performed in Julia on a
2021 MacBook Pro with M1 chip with 10 cores and 32 GB RAM.

C.2 Dynamic Entry Game

Our simulation design follows that of Berry and Compiani (2020). Let 7" be the number of
observed periods and T = 50 + T the total number of periods used in the simulation. Let
N = 10,000 be the sample size. The data are generated as follows: (i) Draw N vectors of
latent variables ¢ of size T' according to the AR(1) process specified in Example 2; (ii) For
each sample, draw X; ~ Bernoulli(p = 0.5) and solve for the optimal policy for T periods.
(iii) Keep the last T periods as the observed data. There are three main parameters (7,7, p)
set to (0.5,1.5,0.75), and an auxiliary parameter 7’ = m — v = —1. The grid has step size
0.025 and boundaries m € [—1.5,1.5], 7’ € [=3,0], and p € [0, 1].
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Heterogeneous firms, 6; > 0

N 2 3 4 5 6
# Vertices 23 71 275 1341
# Edges 22 100 534 3320
Computing time _4 _3
(in seconds) 10 10 10-81 B B
Two types of firms, B3 = B
(N1, N?) (1, 1) (2, 2) (2,4) (2,7) (6, 6)
# Vertices 9 20 32 50 84
# Edges 6 15 25 40 71
Co(rilrllp;‘;clgrgl dt;)me 104 10~ 10~ 103 103
Two types of firms, B3 > Po
ertices
# Verti 9 23 42 69 135
# Edges 21 49 88 221
C‘)(?;lp:;égﬁ dt;;ne 10~ 10-3 10-3 10-3 0.08
(a) Entry games in Example 1.
T 2 3 4 ) 6 7 8 9 10
# Vertices 15 31 63 127 255 ol1 1023 2047 4095
# Edges 14 30 62 126 254 510 1022 2046 4094
Computing time )04 103 19-3 g2 009 042 186 861 43.16

(in seconds)

(b) Dynamic binary choice model from Example 2.

Table 3: Graph characteristics and computing times for the smallest CDC in Examples 1-2

Notes: Computing times are averaged over 10 runs. Symbol “—” indicates that a single run did not finish

within 1 hour. See tables 1a and 1b for the results.
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Monotone outcome response

DI\ |V 2 3 4 5 6 7 8
2 1074 104 1074 1073 0.02 0.11 0.69
3 10~4 1073 0.01 0.15 2.42 33.7 505.46
4 1074 1073 0.12 4.7 167.33 - -

Monotone and concave outcome response

D\ |V 2 3 4 5 6 7 8
3 104 1074 1073 0.03 0.37 4.76 59.94
4 10~4 1074 1073 0.1 2.04 45.05 1044.93

Table 4: Computing times for the smallest CDC in the potential outcomes model from
Example 3

”

Notes: Computing times (in seconds) are averaged across 10 runs. Symbol “—” indicates that a single run

did not finish within 1 hour. See Table 2 for the results.

D Additional Examples

We have reserved two more examples for the appendix. The first example is a discrete choice

model with endogenous covariates, studied by Chesher et al. (2013) and Tebaldi et al. (2019).

Example 4 (Discrete Choice with Endogeneity). Individuals choose one of J+1 alternatives,
Y € {yo,y1,...,ys} =Y, where y, represents the outside option. Choosing y; yields utility
vj(X) +¢; , where X € {z1,...,2x} = X may include prices and individual- and market-
level covariates, and €; € R are latent utility shifters. Individuals maximize their utility,
so Y = y; for j* = argmax,{v;(X) + ¢;}. Normalize vo(x) = 0, for all z, and g, = 0.
Some components of X may be correlated with the latent payoff shifters e = (g9, 1, ...,¢7),
but the nature of this dependence is left unspecified. The econometrician observes Y € ),
X € X, and instrumental variables Z € Z, which are statistically independent of ¢.

Note that X is endogenous and its data-generating process is left unspecified. Such X
can be viewed as part of the outcome vector (Y, X). Denote v;, = v;(xy), for all (j, k), and
let 0 = ((vjr)]=1)r—y; denote U; = &; — o, for all j, and let U = (Uy,...,U;) € R’. Then,
given U and 6, the model produces a set of possible values for (Y, X) given by

G(U, 0) = {(yj,xk) CVjk — Ui 2 Ul — Uj for all [ 7é j}

Figure 7 illustrates possible realizations of G(U;#) for some fixed # in a model with ) =
{Y0,y1,92} and X € {xy, 22}, assuming that v;; < v1y and vy; > v9g. Dashed lines outline

the partition of the latent variable space that corresponds to possible realizations of G(U; #),
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U, .

(y2, 21)
(Y2, 72) ‘

—V99 [~======="------ If' , -
(y2o1) | (g2 1) o
(yo, x2) i (y1, x2) %

I B 7 --------------- 7
(yo,z1) (Yo, 21) (y1, 1)
(!/t)- Jz) i (_Ijl. Iz) i (,1/1. ;1,2)

—V12 —v11 U,

Figure 7: Set-valued predictions in a discrete choice model from Example 4 with J = K = 2,
assuming that v1; < vi2 and v9; > vgo.

highlighted in blue.

Figure 8 depicts the corresponding bipartite graph. The upper part represents the out-
come space, ) x X, and the lower part corresponds to the partition of latent variable space
in Figure 7. For example, uy = {(Uy,Us) : Uy < —v31,Us < —v9g}. Depending on the values
of @ = ({vjr}k,7), the partition and the probabilities of the corresponding regions differ,
but as long as v1; < v12 and vy > v99, the corresponding bipartite graph remains the same.
Suppose that all # € O satisfy this restriction.'” Then, the smallest CDC does not change
with 6 or Z, so it only needs to be computed once. Since P(G(U;0) C A) does not depend
on z, the sharp identified set is given by

©y={0cO: essing((Y,X) €cA|Z==z2)>P(GU;0) CA)forall AecC}.
ze
If X € {z1,...,7x}, the power set of the outcome space grows proportionally to 2(/*DX,
Yet, due to the simple structure of the underlying bipartite graph, the smallest CDC appears
to grow proportionally to 2. Table 5 summarizes the results for K € {2,...,15}.
The analysis above is similar to Chesher et al. (2013): They also treat X as part of

the outcome vector and condition only on Z, which leaves Fyx—, completely unspecified.

The inequalities in C* coincide with those obtained by Chesher et al. (2013), yet our results

190therwise, partition the parameter space as in Example 1 in the main text.
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(Y2, 72) (Y2, 1) (Yo, 2) (Yo, 1) (Y1, 72) (Y1, 1)

Uy U2 us Ug Us Ue

Figure 8: Discrete choice model from Example 4 with J =2 and X € {xy,25}.

K 2 3 4 5 6 7 8
Total 62 510 4,094 32,766  0.2-10° 2-10° 107
Smallest 12 33 82 188 406 842 1,703
K 9 10 11 12 13 14 15
Total 108 10° 10%° 10 10 10*2 1013

Smallest 3,397 6,733 13,321 26,372 02,298 103,912 206,828

Table 5: Core-determining classes in the discrete choice model from Example 4.

additionally imply that the characterization of ©y cannot be further simplified, without
loosing sharpness. Tebaldi et al. (2019) take a different approach. They introduce the
Minimal Relevant Partition (MRP), which is conceptually similar to the partition in Figure
7, and condition on both X and Z, treating the probabilities that the conditional distribution
Fy|x=, assigns to each of the regions in MRP, denoted 7 = (n1,...,nmrp|), as unknown
parameters. Theorem 2.33 in Molchanov and Molinari (2018) implies that the two approaches
are equivalent and deliver the same sharp identified sets. If the functional of interest depends
only on n and Z is discrete, the MRP offers substantial computational advantages. If the
support of X is relatively small, but the support of Z is very rich, the CDC approach may

be computationally simpler. [
The final example revisits the network formation model of Gualdani (2021).

Example 5 (Directed Network Formation). N firms form directed links with each other.
The strategy of each firm is a binary vector Y; = (Yix)rz; € {0,1}¥~!, where Y}, indicates
the presence of a directed link from j to k, and the outcome of the game is Y € {0, 1}V(V=1,
The solution concept is Pure Strategy Nash Equilibrium (PSNE). Since the total number

2N(N—1

of directed networks with N players is ), the size of the outcome space ) of this
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game is 22"V " This renders sharp identification practically infeasible, even for small N.
To simplify the analysis and motivate inequality selection, Gualdani (2021) imposes further
restrictions on the model. The discussion below is conditional on covariates X = x.

First, for each firm k, define a local game T'j, in which the remaining N — 1 firms decide
whether to form a directed link to firm k. Let Y* = (Y}, ..., Y{) € Y* denote the outcome
of I'y. Suppose the payoff of firm j is additively separable, m;(Y,e;0) =3, . WJ’?(Y’“, ek: 0),
where each W;‘? (Y* gk:0) is the same as in the entry game in Example 1 with d; > 0. Then,
the payoff from each local game depends only on the outcome of that local game, and Y is
a PSNE if and only if Y* is a PSNE of I';, for all k. Second, suppose that the local games
are statistically independent — that is, both €!,..., " and the corresponding selection
mechanisms are mutually independent.

Under the above assumptions, the random set of equilibria of the game G(¢) is a Cartesian
product of N independent random sets G*(g*) of equilibria in the local games. It follows
that Core(G') x --- x Core(G") = Core(G) NS, where S is the set of distributions on Y
with independent marginals over Y*. If the distribution of the data lies in S, the identified
sets

O={0cO:PYc€A)>PGCAVACY}

0)={0€©: P(Y" € A") > P(GF C A") vAF C Y, vk}

are equal. If the distribution of the data does not lie in S, then 6y C Oy, because the latter
checks a subset of inequalities from the former. To characterize ©f, Theorem 1 can be applied
to each I'y separately. For N = 3, there are 254 inequalities in total and 15 in the smallest
class. For N = 4, there are 10" inequalities in total and only 144 in the smallest class. For
N =5, there are 10%°7 inequalities in total and 95,080 in the smallest class. Although the
computational burden is lifted substantially, the resulting set of inequalities is still too large.
To this end, one can adopt a type-heterogeneity assumption as in Example 1 in the main

text to keep the analysis tractable. The details are left for future research. |
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