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Abstract

We consider the problem of learning optimal treatment policies from observational
data. We propose an algorithm that combines doubly robust welfare estimation, to
accommodate rich covariates and unknown propensity scores, and sample splitting, to
adaptively select policy complexity. We show that the resulting treatment rule achieves
the minimax-optimal rate of convergence in expected regret while selecting a suitable
policy complexity with nearly oracle performance. Our analysis avoids unnecessar-
ily restrictive assumptions commonly imposed on the data-generating process or on
first-stage nonparametric estimators and yields a sharp characterization of the relevant
universal constants. The practical performance of the proposed method is demonstrated

in a simulation study.

*This is a revised version of a coauthored chapter in our Ph.D. dissertations at UCLA; see Ponomarev
(2022) and Shi (2022). We thank Jinyong Hahn, Rosa Matzkin, Andres Santos, Denis Chetverikov, and
seminar participants at UCLA for valuable feedback.



1 Introduction

Problems of treatment choice are ubiquitous in economics, arising in settings such as the
provision of subsidies to disadvantaged households, bail decisions in pre-trial hearings, loan
approval by banks, scholarship allocation by colleges, and personalized pricing by online
retailers. In such environments, a decision-maker (DM) seeks to design a treatment rule
that assigns each individual to one of several treatment options based on observable char-
acteristics in order to maximize welfare (Manski, 2004). Designing an effective treatment
rule is challenging for two main reasons. First, the DM often relies on observational data,
which requires controlling for a rich set of covariates to identify the relevant welfare function.
Second, the choice of policy complexity is constrained by institutional requirements such as
transparency or non-discrimination and by a fundamental bias-variance trade-off: while more
flexible, personalized rules can potentially achieve higher welfare, they are harder to estimate
reliably from the data.

In this paper, we propose a policy learning algorithm that tackles the aforementioned
practical challenges and has strong theoretical guarantees. Building on the Empirical Wel-
fare Maximization (EWM) framework of Kitagawa and Tetenov (2018), the proposed algo-
rithm combines two key components: doubly-robust welfare estimation (Athey and Wager,
2021) and model selection (Mbakop and Tabord-Meehan, 2021). Double robustness enables
the use of flexible nonparametric estimators of the propensity score and outcome regression
functions — obtained, for example, using modern machine learning methods — and ensures
that the welfare function is estimated at the parametric rate under mild consistency and rate
conditions (Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018).
Moreover, when the doubly-robust estimator is semiparametrically efficient (Chernozhukov,
Escanciano, Ichimura, Newey, and Robins, 2022), we show that this efficiency translates into
sharper performance guarantees even in finite samples. To choose an appropriate policy
complexity, we consider a finite number of candidate policy classes with varying functional
forms and complexities, and evaluate the best-in-class policies out-of-sample. The resulting
procedure adapts to the optimal policy complexity for the underlying data-generating pro-
cess (DGP) and achieves nearly oracle performance. For this reason, we call the proposed
algorithm “Adaptive Welfare Maximization” (AWM).

Following the bulk of the existing literature, we focus on utilitarian (linear) welfare and
evaluate policy performance in terms of expected regret, defined as the expected welfare loss
relative to the optimal treatment rule in the population. Our contribution consists of two
main results. First, we derive a finite-sample upper bound on the expected regret of the

AWM rule, showing that it attains the parametric convergence rate and adaptively selects



the optimal policy complexity by balancing estimation error against potential welfare loss.
We derive the bound under weaker assumptions than those typically imposed in the literature
and precisely pin down the universal constant. We also show that using a semiparametri-
cally (asymptotically) efficient welfare estimator leads to a tighter regret bound even in finite
samples. Second, we establish a new finite-sample lower bound on the worst-case expected
regret, which characterizes the fundamental performance limit of any data-dependent treat-
ment rule. The lower bound matches the upper bound up to constants, implying that the
AWM rule is minimax-rate optimal in expected regret. Together, these results provide strong
theoretical support for the proposed method.

To assess the practical performance of the proposed rule, we conduct a simulation study
in two practically relevant scenarios. In the first, several candidate policy classes contain
the true optimal policy, ranging from relatively simple to unnecessarily complex. Consistent
with our theoretical results, the AWM rule systematically selects the simplest relevant class
and performs comparably to an oracle rule that knows the correct policy complexity. In the
second scenario, none of the candidate classes is sufficiently rich to represent the optimal
policy exactly. In this case, the AWM rule adaptively selects increasingly complex policy
classes as the sample size grows.

This paper contributes to a large and growing literature on optimal treatment choice.
Early work focused on unconstrained policy classes and proposed treatment rulesbased on
the estimate of the conditional average treatment effect function. Manski (2004), Stoye (2009,
2012), and Tetenov (2012) studied minimax-regret rules; Dehejia (2005) and Chamberlain
(2011) considered a Bayesian approach; Bhattacharya and Dupas (2012) introduced a budget
constraint; and Hirano and Porter (2009) considered a limiting experiment. Related work in
statistics includes the so-called Q-learning and A-learning approaches (e.g., Murphy (2003);
Robins (2004); Qian and Murphy (2011); Shi, Fan, Song, and Lu (2018)).

This paper builds upon more recent literature focusing on policy classes with explicit
constraints on complexity, with either binary or multivalued treatments. This line of work
started with Kitagawa and Tetenov (2018), who introduced the EWM framework with binary
treatments and showed that the EWM rule attains minimax-optimal rate of convergence for
expected regret if the propensity scores are known. To accommodate observational settings
with unknown propensity scores, Athey and Wager (2021) introduced a doubly-robust welfare
estimator and established similar, although asymptotic, regret guarantees. Mbakop and
Tabord-Meehan (2021) proposed regularizing the EWM objective to choose among several
available policy classes and showed that the resulting treatment rules have oracle properties.
Zhou, Athey, and Wager (2023) further extended the analysis of Athey and Wager (2021)

to multivalued treatments, and Fang, Xi, and Xie (2025) combined it with model selection.



Our work builds upon the same ideas but imposes weaker assumptions and provides sharper
theoretical guarantees. A more detailed comparison with existing results requires a formal
setup, so we defer it to Section 3.3.

The rest of the paper is organized as follows. Section 2 gives the general setup; Section 3
describes the AWM procedure and presents the main theoretical results; Section 4 presents

a simulation study; Section 5 concludes. All proofs are collected in the Appendix.

2 Setup

We adopt the standard potential outcomes framework of Neyman (1923) and Rubin (1974).
Let d € {0,1} denote a binary treatment status, Y (0),Y (1) € ) potential outcomes, and
X € X a vector of covariates. Let m(x,d) = E[Y(d)| X = z], for d € {0,1}, and 7(z) =
m(z,1) — m(x,0), denote the conditional mean and conditional average treatment effect
(CATE) functions. Consider the problem of a utilitarian decision maker, who chooses a

treatment rule 7 : X — {0, 1}, based on covariates X € X, to maximize the average welfare,
defined as

The welfare function can be equivalently expressed as Vy(7) = E[Y (0)] +E[7(X)7(X)]. Since

E[Y'(0)] does not affect the optimal policy 7(-), we will work with the welfare gain,'

V(m) = E[x(X)7(X)]. (1)

The first-best policy, 7B(z) = 1(7(z) > 0), is to treat individuals for whom the CATE is
non-negative. However, without further restrictions, such policy may be overly complicated,
hard to reliably estimate and implement (e.g., with multiple continuous covariates), or simply
infeasible to the decision maker for institutional reasons (e.g., non-discriminatory laws). To
discipline the problem, we restrict attention to a pre-specified class of feasible treatment rules

IT (policy class), and focus on the constrained problem,

7 € argmax V(7). (2)
well
Choosing a suitable policy class II is essential in applications, as we discuss below.
We assume that the welfare function can be identified from the observable data. To

accommodate endogenous treatment selection, we assume that instrumental variables Z € Z

LAll results below are formulated in terms of regret, V (7*) — V (), where 7* represents the optimal policy
and 7 the implemented one. Since the term E[Y(0)] cancels out, the results are valid for Vj(7) as stated.



are available such that Z 1 {D(z)}.cz, Y (0),Y (1) | X, where {D(z)}.cz denote the potential
treatments. When D is exogenous, i.e., D L (Y(1),Y(0))| X, we set Z = D in the notation.
We denote the observed data vector by W = (Y, D, X, Z) and assume that W ~ P € P, for

a class of distributions P specified below.
Assumption 2.1 (Identification).

1. There is a weighting function g(x,z) € G that identifies the treatment effect function
Tm(x,d) € T via

for each m(x,d) € M.

2. The welfare gain can be expressed as
V() = Ep[r(X)7(X)],

where 7(X) = Ep[1,,(X, D) | X].

The examples below, borrowed from Athey and Wager (2021), illustrate the scope of As-

sumption 2.1. The first example deals with a randomized control trial with binary treatment.

Example 1 (Exogenous Binary Treatment). Suppose that the observed treatment is bi-
nary, D € {0,1}, and exogenous, D L (Y(1),Y(0))|X. Then, we may take Z = D, and
Assumption 2.1 holds with

Tm(x) = m(x,1) — m(z,0);

d — p(z)
p(x)(1 —p(z))’

g(l’,d) =

where p(x) = P(D = 1|X = xz) denotes the propensity score. Multivalued exogenous
treatments can be accommodated by modifying the moment function and complexity measure
for the policy class I as in Fang, Xi, and Xie (2025). |

The second example discusses settings in which the observed treatment is endogenous,
e.g., due to non-compliance. As an example, consider a clinical trial in which patients are
randomly assigned to two different treatment protocols. Since the patients are at will to
choose any treatment they want after discussing the options with their doctors, some may
end up crossing over. In this case, the original randomly assigned protocol serves as an

instrumental variable for the actual treatment; see, e.g., Angrist, Gao, Hull, and Yeh (2025).



Example 2 (Endogenous Binary Treatments with Binary Instruments). If a binary treat-
ment D € {0,1} fails to satisfy the conditional independence restriction in Example 1, the
CATE function cannot be point identified without further restrictions. To this end, suppose
there is an instrumental variable Z € {0, 1} satisfying Z L (D(0), D(1),Y(0),Y (1)) | X, and
treatment selection is monotone, in the sense that D(1) > D(0), almost surely (Imbens and
Angrist, 1994). Then, one can point identify the conditional Local Average Treatment Effect
(LATE) for a subpopulation of individuals with D(1) > D(0) via

Cou(Y,Z| X =x)
Cov(D,Z | X =z)

LATE(z) = E[Y/(1) — Y(0)| D(1) > D(0), X = 2] =

This causal parameter may not be relevant to the decision-maker who aims to maximize the
average welfare across all individuals. In some settings, it may be reasonable to assume that
that CATE(x) = LATE(x) (i.e, if individual treatment effects are suitably homogeneous).
Then, Assumption 2.1 holds with

Tm(2) = m(z,1) —m(z,0);

1 z—s(x)
902 = Ry 5@ = (@)’

s(x) = P(Z =1|X = x);

A(z)=P(D=1|Z=1,X=2)-P(D=0|Z=1,X =2).

If individuals select into treatment based on its perceived effectiveness, one might reasonably
expect that LATE(z) > CATE(x). Then, implementing an optimal treatment policy based
on the assumption LATE(x) = CATE(x) would lead to treating excessively. If the treat-
ment is, for example, a medical test that is costly but potentially life-saving, this approach
may be justified. Under stronger type-independence restrictions, settings with multi-valued

2

instruments, such as “judge designs,” can also be accommodated. ]

The final example illustrates that Assumption 2.1 accommodates settings in which the
observed treatment is non-binary. As an example, consider an online retailer that has ex-
perimented with various price levels and is deciding whether to offer a small discount to a

subset of its customers.

Example 3 (Continuous Treatments). Let D € D be a continuous treatment variable, and
{Y'(d)}4ep denote the corresponding potential outcomes. Suppose the decision maker aims

to maximize

d

Vim) = dv

—E[Y(D + vn(X))] ,

v=0



which is the average effect of an infinitesimal nudge following policy m(x) € {0,1}. Suppose
that D is exogenous in the sense that {Y (d)}4ep L D | X. Denote

Tm(x,d) = (%m(z, d+v)
v=0

Then, under regularity conditions, using integration by parts (Powell, Stock, and Stoker,
1989), Assumption 2.1 can be shown to hold with

0
g(l’, d) = _% 10g f(d ‘ 517),
where f(d|z) denotes the conditional density of D given X. |
In practice, the decision-maker observes a random sample Wy, ..., W, drawn i.i.d. from

a distribution P € P, forms an estimator V() of V (), and solves

FEWM ¢ argmax V,, (). (3)
rell

This is precisely the EWM rule of Kitagawa and Tetenov (2018). In our framework, estimat-

ing V() requires estimating the functions m(z,d), 7,,(x,d), and g(z,z) (to which we will

refer as the nuisance functions) non-parametrically. Athey and Wager (2021) and Fang, Xi,

and Xie (2025) showed that using a doubly-robust estimator V,(7) leads to better perfor-

mance guarantees for 72" We adopt the same approach below. Under Assumption 2.1,

the welfare gain can be expressed as
V() = Ep[r(X)I'(W)], (4)

where
L(W) =7,.(X,D)+ g(X, Z2)(Y —m(X,D)).

The moment condition in (4) is Neyman-orthogonal with respect to m(x,d) and g(z, z),
and the corresponding doubly-robust estimator Vn(ﬁ) can be constructed using cross-fitting
(Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018). To this

end, we impose the following assumptions.
Assumption 2.2 (DGP). All distributions P € P satisfy the following conditions.
1. (Bounded moments) Ep[Y?] < B* < 0o, Ep[r,,(X, D)?] < B? < 0.

2. (Overlap) sup,ey .cz |g(z,2)| <n~' for some n € (0,1/2).



Assumption 2.3 (First-stage Estimators). The first-stage estimators m(z,d), 74 (z,d), and
g(x, z) satisfy the following conditions. For m € M, 1, € T, and g € G, for some 0 <
Gy Cg < 1, with ¢ + (4 = 1, and a positive sequence a(n) — 0 as n — 0,

Ep[((X, D) —m(X, D)) V Ep[(r(X, D) — (X, D))?] < %

)
m

Brl(3(X. 2) — 9(X. 2)) < 2.

where (X, D, Z) is an independent sample drawn from P, for all P € P.

Assumption 2.2 imposes relatively weak conditions on the underlying DGP. Unlike the
bulk of existing literature, we do not require boundedness of Y or sub-Gaussianity of the
residuals Y — m(X, D), conditional on X and D. The stated assumptions only require that
E[I'(W)?|] < B2 + B?/n* < oo. Although such assumptions would make the proofs more
straightforward, they are not essential for the results, and thus we dispose of them. In the
familiar setting of Example 1, the above assumptions are equivalent to Ep[Y?] < B? and
P(D=1|X=xz)€n1—n], foralzeX.

Assumption 2.3 takes an agnostic view on how the estimates of the nuisance functions
are obtained. It can be satisfied, for example, by machine learning estimators such as Lasso,
random forest, or neural networks, under further assumptions on the latent low-dimensional
structure of the underlying DGP. Notably, unlike Athey and Wager (2021), we do not require
uniform consistency of the first-stage estimators, which implicitly requires further restric-
tions on the DGP, such as compact support or extra smoothness of regression functions and
propensity scores, and may be overly restrictive.

When solving for the EWM policy in practice, the decision-maker faces a familiar “bias-
variance” trade-off: A more complex rule may yield higher welfare but it is harder to estimate
from the data. To this end, Mbakop and Tabord-Meehan (2021) proposed treating the policy
class I as a tuning parameter and using the existing approaches to model selection to obtain
a treatment rule with oracle performance guarantees. We also take this approach and propose
a data-dependent criterion that chooses a suitable complexity adaptively.

We assume that the decision-maker can choose between a finite number K of policy
classes Ily,..., Il with different complexity. These classes may be nested, overlapping, or
non-overlapping. Since solving the EWM problem is typically computationally hard, we do
not pursue settings with infinite number of policy classes, as in Mbakop and Tabord-Meehan
(2021) and Fang, Xi, and Xie (2025), and focus only on the practical case with finite K.> A

?Dealing with an infinite number of classes typically requires stronger restrictions on the DGP and addi-
tional penalization, as explained in Mbakop and Tabord-Meehan (2021).



convenient way to measure complexity is via the VC dimension.

Definition 2.1 (VC-Dimension of the Policy Class). Let G be a collection of subsets of X. Say
that a set of points {x1,..., x4} C X is shattered by G if, for every subset S C {x1,..., 24},
there exists a set G € G such that S = G N {xy,...,xq}. The VC-dimension of G is the
cardinality of the largest set {x1, ..., x4} that can be shattered by G. Any policy m € 11y, takes
the form w(x) = 1(x € G) for some G C X, so we identify Il with a collection of sets Gy
and define VC(Ily) = VC(Gy).

To state the main results, we assume that all relevant policy classes have finite VC

dimension. This assumption can be relaxed as we discuss in Remark 1.
Assumption 2.4 (Policy Complexity). VC(Il;) < oo for all k € {1,...,K}.
The following examples illustrate.

Aggregation-based rules. Let Sy : X — S, with |Sg| = Ni < 00, be a function that turns
a covariate vector X into a summary statistic S; that can take Ny different values. Consider

the class of rules that depend on X only through Sk:
O ={m: X = {0,1} : Si(z) = Sk(2") = =(z) =n(a)}.

Such class is finite and has VC dimension N;. In the absence of further constraints on I,

the solution to (2) can be obtained analytically as
7Tk(8) = l(Tk(S) = 0),

where 7;(s) = E[Y(1) — Y(0)| Sk = s]. By the law of iterated expectations, the function

Tr(x) is identified as 7 (s) = E [['(W) | Sk = s, and its empirical analog can be computed as

fi(s) = Zoim I=I01(Sy(X;) = 5)
Y (Sk(X) =)

which gives a closed-form solution to (3).

Linear threshold rules. Let z;, € R% be a subvector of  and consider the classes of rules

ok = {Tmi(®) = 1B k7% = k) * (Cmkr Bpe)’ € R+

form=1,..., M. Then, set

I, = {m(z) = H Tk (T) : () € Wi}

9



The VC dimension of each II,, ; is at most dj + 2, while the VC dimension of IIj is finite
although harder to precisely quantify (see Lemmas 2.6.15 and 2.6.17 in van der Vaart and
Wellner, 1996). Kitagawa and Tetenov (2018) show that for such classes, the optimization
problem in (3) can be re-formulated as a Mixed-Integer Linear Program (MILP), which can be
converted into a sequence of linear programs via a branch-and-bound algorithm. Compared
with the preceding class, the regions in the partition of X here are estimated from the data

rather than set exogenously.

Decision trees. Trees represent decision rules recursively. A depth-zero decision tree,
To(z), is a constant decision rule To(x) = 0 or Ty(z) = 1 for all x € X. For any k > 1,
a depth-k decision tree T}, is obtained by specifying a splitting variable j € {1,...,dx}, a
threshold ¢ € R, and two depth-(k — 1) decision trees X |, T} |, so that

Ti(w) = L(z; < OT 4 (2) + Lz; > T (2).

Letting IIj, denote the class of all depth-k decision trees over X C R the VC-dimension
of TI, is of order 2% log(dx), see Zhou, Athey, and Wager (2023). The aforementioned paper
also proposes two methods for solving (3) in practice closely related to the branch-and-
bound algorithm used for solving MILP. Similar to linear threshold rules, decision trees infer
the appropriate partition of the covariate space X from the data, rather than setting it

exogenously.

3 Adaptive Welfare Maximization

3.1 Implementation

We start by introducing the proposed policy learning algorithm. The first step is to obtain

a doubly-robust estimator for the welfare function.

Algorithm 1 (Doubly-Robust Welfare Estimation).
Input: A data sample (W;)icr of size ng.
Output: A welfare estimate V&) (7), for any fized policy m € Uszl I1;.

1. Randomly split the sample into J evenly sized folds Iy, ..., 1; of size |ng/J], distribut-

ing the remaining ng — J|ng/J]| observations arbitrarily.

2. For each j, compute the non-parametric estimators m=(z,d), #9)(x,d), and 39 (z, 2)

using the %nl observations in all folds except for j.

10



3. For each i € I;, for each j € {1,...,J}, compute
TED (W) = 250X, D) 4 650X, Z)(Y; — (X5, Dy)).

Note: If the propensity score p(X;) is known, it may be plugged into §9)(X;, Z;).

4. Compute the final stimator
()= L33 ),
j=1 i€l

Next, we describe the main algorithm. Following Mbakop and Tabord-Meehan (2021),
the idea is to choose the optimal policy complexity using sample-splitting and compute the

corresponding EWM rule.

Algorithm 2 (Adaptive Welfare Maximization).
Input: Data sample (W;)I,; Policy classes 11y, for k € {1,...,K}.
Output: A policy 2™ . x — {0,1}.

1. Randomly split the sample (W;)I, into the estimating (W;)icrp and hold-out (W;)icu
samples of sizes ng and ny. Let the superscripts (E) and (H) indicate that the corre-

sponding object was computed using each of the two samples correspondingly.
2. For each policy class 11
(i) Compute the EWM policy using (W;)ick,

fr,(CE) — argmax V) (),

melly

where VE) (1) is computed as in Algorithm 1.

(ii) FEvaluate its performance in the holdout sample:

=—z B(wy).

zEH

Note: Computz'ng I® here does not require cross-fitting: the first-stage estima-

tors m®)(z,d), , (.7: d), and §¥)(z, 2) are computed using the full (E) sample.

11



3. Select k = argmaxyer i Qr and define

The downside of using a hold-out sample is that a share ny/(ng + ny) of observations
is used only for out-of-sample evaluation. In Appendix A.1, we provide a cross-validation
procedure that alleviates this concern but is more computationally intensive. The result-
ing treatment rules have exactly the same theoretical guarantees and perform similarly in
simulations, with the CV-rule being consistently slightly better.

3.2 Theoretical Guarantees

To evaluate the performance of the AWM rule, we compare its welfare with the maximum
welfare attainable within the class of policies I = |JI, II;. Denote 7% € argmax, . V()
and 7} p € argmax, ., V(7), where the subscript highlights the dependence of the policy

rules on the underlying data-generating process. Note that by construction, 7p = 7} p, for

some k. Since the welfare under 724" is a random quantity, we focus on the expected regret:
Rp (" M) = Ep[V (7p) — V(7" M), (5)

where V (7AWM) = Ep [ AWM (XD(W) | #AWM]. This criterion can also be viewed as risk un-
der a specific data-dependent choice of the loss function ¢p(7,7") = |Vp(7w) — Vp(7')|, which
measures the misclassification loss in welfare units. Other loss functions can be accommo-
dated under suitable modifications of the moment conditions.

We prove two key results regarding the performance of AWM policy rule. Our first result
is an upper bound on expected regret.

Theorem 1 (Regret Upper Bound). Let Assumptions 2.1-2./ hold, and #*"™ be computed
as in Algorithm 2. Then, for any P € P, for all n large enough,

() < iy (€4 PO O 4 V() - Vi) ) + | S22 B g,

k<K ng
(6)

where C < 58 is a universal constant, and R, = o(n) is the remainder term explicitly

computed in Equation (A.10).

The term /Ep[T'(W)2]/ng in (6) reflects two desirable properties of the welfare estimator:

semiparametric efficiency and double-robustness. To see a connection with efficiency, note

12



that Ep[['(W)?] = Varp(T'(W)) + ATE?, where the second summand does not depend
on the chosen estimator. Although any score function I'(W) satisfying Ep[[(W)| X] =
7(X) can be used to form an estimate of V(7), the efficient score I'(IW) has the lowest
variance, leading to the tightest bound. Despite the fact that semiparametric efficiency is an
asymptotic concept, the reduced variance of the welfare estimator leads to better theoretical
guarantees even in finite samples. We further discuss semiparametric efficiency in the context
of policy learning in Remark 2. In turn, the double-robustness of V(7) ensures that it is first-
order asymptotically equivalent to the oracle welfare estimate, V(7) = n=t 327, 7(X;)T(W;)
uniformly over m € II. As a result, expected regret of the AWM rule approaches zero at

1/2 under relatively weak consistency requirements on the first-stage

the parametric rate n~
estimators. This fact allows to accommodate practical settings with rich covariates and
unknown propensity scores.

The minimum over k in (6) shows the adaptivity of the AWM rule: It optimally balances
the policy complexity, 1/VC(Il;), and welfare loss, V(75) — V (7} p). On the one hand, (6)

implies that

W\/min(VC(Hk) smp € i) +

KEp[I'(W)?]

ng

+ R,

yielding the same regret bound as if the decision-maker knew the complexity of the simplest
policy class Il containing the optimal policy 7. On the other hand, is possible that the
minimum in (6) is attained by the class k with 0 < V(7}) =V (7} p) = O(n/?), i.e., a simple
policy from a low complexity class is nearly optimal. In either case, the AWM rule optimally
resolves the bias-variance trade-off, relative to the class II. Our Monte Carlo experiments,
presented in Section 4, suggest that this trade-off is very pronounced in practice, and the
AWM successfully adapts to the underlying optimal complexity.

The final leading term in (6) reflects the “price” of model selection and increases with the
number of classes. The seemingly restrictive dependence on K appears since our Assumption
2.2(1) only requires Ep[I'(1W)?] < oo, and can be drastically improved under further restric-
tions. In particular, the relevant rate would be K™ if Ep[I'(W)™] < oo, log(K) if T(W) is
sub-exponential, and +/log(K) if ['(W) is sub-Gaussian.

Our second main result concerns rate-optimality. Let Py, = {P € P : 7w}, € II;} denote a
class of distributions such that the optimal treatment rule within IT belongs to II,. Note that

(Pr)k<xi form a partition of P. By Assumption 2.2 and the law of iterated expectations, we

can bound /Ep[['(W)?| < B/n- L, where L = /1 + B2n?/B2. The bound in (6) provides

13



a guarantee on the worst-case performance of #2"WM within Py,
— B |VC(II B |K
sup Rp(72WM) < CL= VOly) | L=y/— + R,. (7)
PePy, n ng nyvng

We show that no policy rule can do substantially better.

Theorem 2 (Regret Lower Bound). Let Assumptions 2.2 and 2./ hold. Then, for any k,

B ;) — 1 6B
inf sup Rp(7,) = C—1/ Vo) 00 ; (8)
n:W'—{0,1} pep, n n n

for all n > max(5,n " (VC(Il) — 1)), where C > 0.16 is a universal constant.

The “worst-case” DGP-s, which attain the supremum in (8), are such that the individual
treatment effects Y (1) — Y'(0) are highly variable, the covariate space X is rich, the distri-
bution of X has high entropy, and yet the CATE function 7(X) is of the magnitude n="/2.
In such settings, it is statistically hard to distinguish between individuals that should and
should not be treated, so any policy learning rule is bound to make mistakes. Similar worst-
case DGP’s appear in the proofs of related results in Hirano and Porter (2009), Kitagawa
and Tetenov (2018) and Athey and Wager (2021).

3.3 Discussion

Taken together, Theorems 1 and 2 provide a strong theoretical justification for using the
AWM policy rule in practice, and refine the existing results in the literature. Specifically,
we show that, in contrast to the EWM rule of Kitagawa and Tetenov (2018) and the PWM
rule of Mbakop and Tabord-Meehan (2021), the AWM rule attains the optimal (parametric)
rate of convergence in settings with rich covariates and unknown propensity scores. Our
analysis does not require bounded outcomes and yields a sharper bound by leveraging a
semiparametrically efficient welfare estimator. While related rate results have been obtained
in Athey and Wager (2021) and Zhou, Athey, and Wager (2023), our approach additionally
establishes adaptivity, provides finite-sample (rather than asymptotic) guarantees, and avoids
restrictive tail assumptions. Moreover, we do not require uniform consistency of first-stage
estimators, a condition that may be overly restrictive in practice

Combining doubly robust welfare estimation with model selection requires technical ar-
guments that differ substantially from those in the existing literature. The paper closest
to ours is Fang, Xi, and Xie (2025). Relative to that work, we restrict attention to binary
policies but accommodate a richer set of environments, including endogenous treatment se-

lection (as in Example 2) and continuous treatments (as in Example 3). Our analysis does
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not require bounded outcomes or first-stage estimators and yields a sharp characterization
of the relevant universal constants. In particular, the constant C' in Theorem 1 is smaller
than its counterparts in Theorem 2.1 of Kitagawa and Tetenov (2018) and Theorem 1 of
Athey and Wager (2021). We further provide a new finite-sample lower bound on expected
regret, establishing the minimax-rate optimality of the AWM rule. Unlike the lower bound
of Kitagawa and Tetenov (2018), our result allows for weak overlap — formally, sequences
of models P,, with 7, — 0 and distributions P, € P,, such that P,(D =1| X =z) — 0 for
some © € X — and, unlike Athey and Wager (2021), is non-asymptotic.

We conclude this section with two technical remarks. The first one discusses alterna-
tive measures of policy complexity, and the second one points out another connection with

semiparametric efficiency theory.

Remark 1 (Infinite VC Dimension and Multivalued Policy Rules). A version of Theorem 1
holds for many policy classes of infinite VC dimension. To elaborate, let N (e, F,||-||) denote
the covering number, i.e., minimum number of ||-||-balls of radius € required to cover a set
F. Define the classes of functions Fj, = { f(w) = w(z)['(w) : # € I}, for each k = 1,..., K,
and suppose that

) = [ sup flog NIl g Fic [ g < . )

where the supremum is taken over all finitely supported measures @, and || f[|, , = (/ f 2dQ)V/2.
This quantity £(I1;) is known as the entropy integral and plays an important role in empirical
process theory (see Chapter 2 in van der Vaart and Wellner, 1996). For a version of Theorem
1 to hold, it suffices to require that £(Il;) < oo, for all II;. Specifically, as a simple corollary
of our proofs (starting from Equation (A.6) in the proof of Lemma A.7), under Assumptions
2.1-2.3 and the above condition, we obtain the same bound on expected regret as in (6)
with a smaller universal constant C' = 44/12, and &£(II) replacing VC(II). The entropy
formulation also allows to accommodate multivalued policy rules, as in Fang, Xi, and Xie

(2025), for which the VC dimension is not appropriate. |

Remark 2 (On Semiparametric Efficiency in Policy Learning). Intuitively, using efficient
estimator of the welfare function should be beneficial: if V(r) is “close” to V (), its maximizer
7 should come “close” to maximizing V(7). Although it is hard to study efficiency of 7 itself
(it estimates an infinite dimensional parameter and, in many cases, has non-standard rates
of convergence), some general results can be obtained for the maximum welfare, V(fr) If the
policy class II is unrestricted, the optimal treatment rule is 7/2(z) = 1(7(z) > 0), and the

maximum welfare is max,en V() = E[max(7(X),0)]. Luedtke and Van Der Laan (2016)
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showed that if the optimal treatment rule is unique, i.e., P(7(X) = 0) = 0, then max, ¢ V' (7)
has a well-defined efficiency bound, and provided an estimator that attains it. Below, we
argue that similar results hold for restricted policy classes.

We only give a sketch of the argument below and defer the details to Lemma A.13 in the
Appendix. Suppose that the covariate space X" is bounded, the model P satisfies Assumption
2.2 and all P € P are dominated by a sigma-finite measure p with bounded densities dP/du <
C,, < 00. Suppose that (W) = 7n(X)['(W)—E[x(X)I'(IW)] is the efficient influence function
for V(r), and sup,cp |V () — V(7)| = op(n~'/?), where V(1) = 1 3™ 7(X;)[(W;). Note
that the welfare function V' : II — R satisfies

V(m)| <[Py p < Cr < o0,

[V (m1) = V(m)| < |[Tllyp l[m1 — m2llyp < CrCyullm — m2ll,,

where Cr = /B2 + B2/n? implied by Assumption 2.2-(1). Thus, V(-) can be viewed as an
element of the Banach space Cy(II) of continuous bounded functions on Il endowed with a
sup-norm, [[V]|,, = sup,eq V().

The stated assumptions imply that V,,(7) is semiparametrically efficient for V() for each
fixed 7 € II. Under further regularity conditions, using efficiency theory in Banach spaces
(e.g., Chapter 5 in Bickel, Klaassen, Ritov, and Wellner, 1993), one can show that V(-) is

semiparametrically efficient for V(-) as an element of C,(II). In particular,
Va(Va() = V() =4 G(), in Cy(Il),

where G(-) is a centered Gaussian process with covariance kernel Cov(G(m),G(ms)) =
E[¢r, (W)t)r, (W)], defining the efficiency bound for V'(-). Now, consider amap ¢ : C(II) — R
defined as (V) = maxgen V(m). By, Proposition 4.12 in Bonnans and Shapiro (2013),
Y(-) is Hadamard directionally differentiable at V' in direction H with derivative ¥{,(H) =
maxcg+v) H(m), where S*(V) = argmax, . V(7). Thus, 9(-) is fully Hadamard differen-
tiable if and only if S*(V) is a singleton. In the latter case, it follows from the Delta-method

that V(#) = maxe V,, () is semiparametrically efficient for max e V(7). |

4 A Simulation Study

4.1 Design

In this section, we present a simulation study designed to illustrate the performance of

the proposed AWM procedure in practice. We consider a stylized data-generating process
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to illustrate the main insights of our results and allow for straightforward visualization.
Covariates X = (X1, X, X3, X4) are drawn independently from Uniform [0, 1]. The potential

outcomes are defined as

Y(O) = 07(X3 + X4+ 80);
Y(l) = CATE(Xl,XQ) + 07<X3 + X4 + 81),

where g, e; ~ N (0, 1) are independent Normal errors. We consider two CATE functions: the
first exhibits a positive effect when (X, X») lies within a rectangle (“Rectangle DGP”), and
the second when they fall within an ellipse (“Ellipse DGP”), highlighted in black in Figure
la. In each case, the first-best policy assigns treatment to all units within the corresponding
region. The covariates X3 and Xy are irrelevant, but this fact is unknown to the algorithm.

The propensity score is given by

P(D=1]|X)=A (10g(0.5) + (X1 + X + X5 + Xy)(log(2) — log(0-5))> |

4
where A(-) denotes the logistic function. This specification ensures the propensity score lies
in the interval [1/3,2/3].

4.2 The Importance of Choosing Policy Class

In practice, the DM does not know what policy class is most suitable for the underlying DGP.
The effects of choosing an incorrect policy class can be dramatic. To illustrate, we consider
two families of policies more or less suitable for each of the above DGPs.

The first family consists of discretized rules, where X; and X, are discretized into bins
to form a grid over the unit square. Each cell in the grid can be assigned to either treat
or not treat, with model complexity governed by the number of bins along each axis. The
rectangular region can be exactly recovered using discretized rules when the number of bins
along each axis is a multiple of five (since the decision boundaries lie at 1/5 and 4/5), while
approximating the elliptical region well requires a very large number of cells.

The second family of policies consists of linear threshold rules, in which covariates enter
polynomially and complexity is determined by the number of included terms. The elliptical
region can be exactly recovered by such a rule when second-order polynomial terms of X
and Xy are included, while approximating the rectangular region well requires using very
high-degree polynomials.

For each DGP, we generate a dataset with a relatively small sample size of 200. We

estimate the outcome regressions using OLS and propensity score using logistic regression.
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Figure 1: The role of policy complexity
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For each family of policies, we fit EWM rules with different fixed complexities. Figure 1
presents the results. The first two columns feature discretized rules and the third one — linear
threshold rules. Panel (a) shows the optimal choice of complexity, Panel (b) — underfitting,
and Panel (c) — overfitting. It is visually clear that both under- and over-fitting may lead

to treatment rules that are drastically different from the optimal rule.

4.3 Adaptive Welfare Maximization

Next, we show that the AWM policy successfully adapts to the underlying unknown com-
plexity in each of the above DGPs. We generate 200 datasets for each sample size n €
{200, ...,1600} and compute the average regret for different procedures across these datasets.
We compare the AWM rule against several EWM rules with fixed complexity levels. We im-
plement AWM as described in Algorithm 3 in the Appendix, using 4-fold cross-validation
and 5-fold cross-fitting. We estimate the nuisance parameters using OLS for the outcome re-
gression models and logistic regression for the propensity score. To reduce the computational

complexity, here we focus on discretized rules.”

4.3.1 Rectangle DGP

The optimal policy complexity for the Rectangle DGP is five bins per axis: it recovers the
optimal treatment region while avoiding overfitting. Our theory suggests that as the sample
size increases, AWM should increasingly favor this level of complexity over the alternatives.
We let AWM rule select the number of bins per axis adaptively via cross-validation from the
range {3,4,...,10}. Figure 2 depicts the regret of AWM alongside EWM policies using 3, 5,
and 10 bins per axis. Figure 3 additionally shows the proportion of times each complexity
level is selected by AWM at each sample size.

The EWM rule with five bins per axis achieves the lowest regret, as it corresponds to
the correctly specified policy class. The AWM rule achieves regret that is very close, despite
not knowing the true complexity in advance. EWM with 3 or 10 bins performs worse, with
10 eventually outperforming 3 as the sample size increases and approximation error begins
to dominate estimation error. Consistent with our theoretical results, the AWM rule selects

mostly 5 and 4 bins at smaller sample sizes and increasingly favors 5 as the sample size grows.

3Computing the EWM discretized rule amounts to computing the CATE functions cell by cell, which
is computationally straightforward. Computing the optimal linear threshold rules requires solving a Mixed
Integer Linear Program; see Mbakop and Tabord-Meehan (2021).
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4.3.2 Ellipse DGP

For the Ellipse DGP, the first-best policy cannot be exactly recovered by any discretized rule.
As the sample size increases, we expect higher-complexity classes to perform better, since
they can better approximate the curved decision boundary. Ideally, the AWM rule should
also shift toward selecting more complex policies as the sample size grows. In this simulation,
we let AWM select the number of bins per axis from 5 to 15. We plot the regret of EWM
policies with fixed discretizations at 5, 10, and 15 bins, along with the regret of AWM, in
Figure 4. Additionally, Figure 5 shows the share of complexity levels chosen by AWM across
different sample sizes.

From Figure 5, we clearly see that as the sample size increases, AWM begins to favor
higher-complexity classes. As a result, AWM maintains relatively low regret across all sample
sizes, as shown in Figure 4. Among the fixed-complexity EWM policies, using 5 bins performs
best at smaller sample sizes, while 10 bins becomes optimal as the sample size grows. The
15-bin model consistently overfits and performs worse. AWM initially favors 5 and 6 bins,
and gradually shifts toward selecting 10 and 11 bins as more data become available.

In conclusion, these simulation results illustrate the ideal behavior of adaptively selecting
policy complexity using cross-validation. When the optimal policy lies within the policy class,
AWM eventually identifies the correct level of complexity and achieves regret close to the
first-best. In settings where the optimal policy cannot be exactly represented, AWM adapts
to the sample size and favors increasingly rich models as sample size increases, effectively

balancing estimation and approximation error.

5 Conclusion

This paper proposed a policy learning algorithm called Adaptive Welfare Maximization. It
is based a doubly-robust, semiparametrically efficient estimate of the welfare function, which
allows to accommodate settings with rich covariates, where estimating the nuisance func-
tions reliably requires using machine learning methods. Moreover, it automatically adapts to
the unknown optimal policy complexity for a given DGP. Our proof strategy can be readily
adopted and extended to settings with multivalued treatments or non-linear regret functions.
We leave such extensions for future work. From a practical perspective, an important direc-
tion for future work is developing computational tools to scale the approach proposed here

and in related work to large datasets.
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A Appendix

A.1 CV algorithm

Algorithm 3 (Cross-Validation for Policy Complexity).
Input: Data sample (W;)I_,; Policy classes 11y, for k€ {1,...,K}.
Output: Data-driven complexity choice k.

1. Randomly split the sample (W;)"_, into L samples, denoted Si,...,Sy. For eachl €
{1,..., L}, let the superscripts (1) and (—1) indicate that the corresponding object was

computed using only S;, or only S_; = U;4S;, correspondingly.
2. For each policy class Ij:
(i) For eachl € {1,...,L}, compute the EWM policy:

7%,(;[) — argmax V9 (n),

melly

where V(_l)(ﬂ) 1s constructed as in Algorithm 1, and evaluate its performance out
of sample:
A (=l 1 (1 A (-
Q") = g7 D (X)L (W),
| l| €S
Note: Computing D does not require cross-fitting, i.e., the first-stage estima-

tors m=Y(z, d), Tf(h_l)

(z,d), and §V (x, z) may be computed using the entire (—1)

sample.

(i1) Compute the cross-validation criterion

|

L
N R
Qr = Z Q(Wl(c l))-
=1
3. Choose k = argmaXye( .k Qr. |

A.2 Known Results and Some Refinements

To keep the notation simple, we state all results for regular rather than outer expectations,
but take into account the potential difference between the two throughout the proofs. For the
symmetrization lemma below, the structure of the underlying probability space is important.
For the detailed discussion, see Sections 2.1-2.3 in van der Vaart and Wellner (1996).
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First, we state a well-known symmetrization inequality; see, e.g., Lemma 2.3.1. in van der
Vaart and Wellner (1996), for reference.

Lemma A.1 (Symmetrization). Let W1, ..., W, be an i.i.d. sample and F a class of mea-
surable functions f: W +— R such that E[f(W;)] < oo for all f € F. Then,

sup f <2 sup iof (Wi
PE S >1] g 2 S ]
where &1, ..., &, are i.i.d. Rademacher random variables independent of Wy, ..., W,.

Next, we state a useful maximal inequality for Orlicz norms. Let ¢ be a strictly increasing,

convex function satisfying 1/(0) = 0, and X be a random variable. The Orlisz norm [[X[, is

defined as %
i = oo (o () <1}

The following result is Exercise 2.2.8 in van der Vaart and Wellner (1996).

Lemma A.2 (Maximal Inequality with Orlisz Norms). For any random variables X1, ..., X,

and any strictly increasing, convex function 1,

B x| < 07 ) max
Jjsm

Jjsm

Proof. For any C' > 0,

Jjsm

where the first inequality holds because v is convex and non-decreasing. Therefore, for any
C such that max;<,, E[¢ (|X;|/C)] < 1, we have

B max ;]| < C ).

Jjsm

Choosing C' = max;<m, || X;l|, concludes the proof. |

Next, we pin down the universal constant in Theorem 2.6.4. from van der Vaart and
Wellner (1996).
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Lemma A.3 (Covering Numbers for VC classes). For any VC-class C of sets, any probability

measure Q, anyr > 1, and 0 < e < 1,

L 1 veo (1 r(V(C)-1)

NECLQ) < VOO (1)

Proof. We closely follow the proof of Theorem 2.6.4. in van der Vaart and Wellner (1996). We
start by referencing the main steps and introducing the necessary notation. First, note that
1c = 1pllg, = QY7 (CAD), so an e"-cover under L;(Q) produces an e-cover under L,(Q).
Therefore, the result for » > 1 follows immediately from the result for » = 1. Second, one
can argue that it suffices to consider empirical type measures () supported on a large enough
finite set of distinct points {x1,...,2,}. Third, it is more convenient to bound the packing
number D(g,C, L1(Q)) first and use the fact that N(e,C, L1)(Q)) < D(e/2,C, L1(Q)).

Each set C' € C can be identified with a binary vector 1¢ = (1(z; € C)),, and the
collection C can be identified with a binary matrix Z of size n x #Z. Define d(1¢,,1¢,) =
n~' 3" |1¢, — 1¢,|. Then, recalling that @ places probability 1/n on each z;, Q(C1ACy) =
d(1¢,,1¢,), so that D(e,C, L1(Q)) = D(e, Z,d). For simplicity of notation, assume that Z
is e-separated with respect to d, so the goal is to bound its size #Z in terms of the VC
dimension V/(C).

Denote S = V(C) — 1 and fix an integer m such that S < m < n. For a subset J C
{1,...,n} of size #.J = m, let Z; denote the projection of Z onto {0,1}”, and #2Z; denote
the average size of Z; over all subsets J or size m. Then, following the proof on Page 138 of
van der Vaart and Wellner (1996), we arrive to the bound

#Zme(m+ 1) o e(m+ 1)#Z; o EM#Z,
en(m+1)—2n—m)S ~ e(m+1)—25 =~ em —25’

#Z <

which holds without any extra constants. The number of points in any Z; is equal to the
number of subsets picked out by C from the points {x; : ¢ € J}. By the Sauer-Shelah Lemma,
this is bounded by $% =0 ( ), which is smaller than (em/S)* for m > S.* Therefore,

e\ s mS—I—l €
2<(5) me—w
# S/ me—28
holds for all integers m such that S < m < n. Denote the right-hand side of the preceding
display by f(m). This function is strictly decreasing until m* = 2(S + 1)/e and strictly
increasing afterwards. Therefore, the optimal unconstrained choice is m = m*, for which

f(m*) = (2¢/e)%(S + 1)(1 + S~1)%. However, the argument leading to the upper bound on

4Indeed, for t € (0,1), ZJ o () < Z]S o (% )tﬁg < (1% Set t = £ and use (1+5/m)™ < €.
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#Z only applies to integer m such that S < m < n, while m* may not be integer. To ensure
that a similar bound holds for an integer value of m, we can simply use f(m* — 1) since
somewhere between m* — 1 and m* there must be an integer, and f(m) is decreasing on this

interval. We have

(2(S+1)/e —1)5Fe
2(S+1)/e —1)e —28

flm*—1) = (g)° :

- (%)S 1—15/2(5"" 1—¢/2) (1 + 1_—56*/2)8
< ()% (S + 1) =tg exp(l - /2)
< (2)°(S+1) -2V,

for all € € (0, 1) since the function g(¢) = (1—¢/2) ! exp(1—¢/2) is monotonically increasing.

Therefore, we obtain the bound

#Z < (%)S(S+1)-2\/E,

and it remains to check that this bound still holds when m* — 1 < S5 or m* > n. Note that
m*—12> S forall e € (0,1). If m* > n, by the Sauer-Shelah Lemma

5 /n en\ s em*\° 2¢\°
#zgz:(j)g(?) <(S) <e(?) ,

=0

which certainly implies the bound in the previous display. Therefore, recalling that #2 =

D<€7 C, Ll(Q))a
N(‘€7 Ca Ll (Q))

and the desired result follows. [ |

Next, we state three lemmas about specific VC-subgraph classes of functions. A subgraph

of a function f: X — R is defined as

Cr={(t,x) eRx X :t< f(x)}.
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A class of functions F is VC-subgraph if the class of all subgraphs
Cr= {C £ ferF }

has a finite VC dimension. In this case we denote V(F) = V(Cx).
The first result is Theorem 2.6.7. from van der Vaart and Wellner (1996). It is a direct

corollary of the result for sets (our Lemma A.3) and holds with the same universal constant.

Lemma A.4 (Covering Number for VC-subgraph Classes). For a VC-class of functions with

a measurable envelope function F' and r > 1, for any probability measure Q with [|F||,, > 0,

v (1) VD
NEIIFllg,  F LQ) < 5 2V (6 @ (1)

for0<e<1.

For a particular VC-subgraph class of functions, the bound in Lemma A.4 can be im-

proved.

Lemma A.5 (A Simple VC-Subgraph Class). Let G denote a class of subsets of X with
a finite VC dimension V(G), and F : X — R be an arbitrary function. Define a class of

functions:

F={1(z € G)F(x): G € G}.
Then, F is VC-subgraph with V(F) < V(G).

Proof. Let VC(G) = d and D = {(t1,21),...,(ts,xa+1)} C R x X be an arbitrary set of
points. By definition, D is shattered by F if for every subset {(¢;,x;) : j € J} there is a
function f with subgraph Cy such that Cy N D = {(t;,z;) : j € J}. Equivalently, D is
shattered by F if for every subset J C {1,...,d + 1} there is a set G € G satisfying

t; < 1(z; € G)F(z;) for j e J

(A1)
tr = 1(zy, € G)F(xy) for k ¢ J

We will argue that D cannot be shattered by F.

First, if there is (¢;,2;) such that t; < 0 and ¢; < F'(x;), then t; < 1(x; € G)F(x;) holds
for all G € G. In this case, any subset of D that does not include ¢;, z; cannot be picked out,
so D cannot be shattered by F. Similarly, if there is (¢, zx) such that ¢, > 0 and ¢, > F(zy),
then tx > 1(x) € G)F(xy) holds for all G € G. So, any subset of D that includes this point
cannot be picked out, and D cannot be shattered by F. Therefore, we will assume that each
(tj,z;) satisfies either t; <0, F(x;) > 0ort; >20,F(z;) <O0forj=1,...,d+ 1.

30



By assumption, G does not shatter {z1,...,2z4s1}, meaning that there exist a subset
{z;}jes that G cannot pick out. Then, for every G € G we have either z; ¢ G for some j € J
or xy € G for some k ¢ J. If the inequalities in (A.1) do not hold for this J for any G, then
{(tj,2;)}jes cannot be picked out and D cannot be shattered by F. Suppose the inequalities
in (A.1) hold for some G € G. If z; ¢ G for some j € J, it must be that ¢; < 0 and, according
to the previous discussion, F'(z;) > 0. Then the set J' = J\(¢;,x;) cannot be picked out. If
x € G for some k ¢ J, it must be that ¢, > 0 and F(x;) < 0, so the set J” = J Uk cannot
be picked out. Therefore, D cannot be shattered by F, so VC(F) < VC(G). |

Lemma A.6 (Covering Numbers for Special VC-Subgraph Classes). Let F be the class of
functions defined in Lemma A.5. For any r > 1, probability measure Q with ||F|[,, > 0,
and 0 < e < 1,

1 v 1 r(V(F)-1)
NE 1Pl 7 LQ) < 32V (F)a0" (1) |

Proof. By Lemma A.5, F is VC-subgraph. For r = 1, note that

s = Follga = Eallle, = 1a,[[Fl] = P(CLACE) [[Fllg,

where P = A x Q/[|F||,, is a probability measure on R x X" and A is a Lebesgue measure
on R. Then, by Lemma A.3,

N(e||F F.L = N(e,Cr, Li(P)) < 1V]—"4 v (1 v
El1Fllg  F. Lr(Q)) = N.Cr, La(P)) < 5=V (F) (4e) (_) |

For r > 1, note that

. ||f1 - f2||R,1

11 = Pollg, =Bo(lle, F = 16, FIIFI™) = == Eq([F]"),
1F [ g

for the probability measure R with density |F|"~!/Eq(|F|"~!) with respect to Q. Therefore,

1/r
11 = follg
I1fi = fellg, = (W 1Flg,

so that by the previous argument applied to R instead of Q)

\ 1\ "(VE-D
N 1Fllg, 7 L(Q) < NE Pl F L) < 52V (P49 (1) ,

§,_.
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which completes the proof. |

The last lemma is a version of the classical maximal inequality for Rademacher complexity

of functional classes with finite VC-dimension with a pinned down universal constant.

Lemma A.7 (Finite-Sample Bound on Rademacher Complexity). Let Wy, ..., W, be an i.i.d.

sample and &, ..., &, be i.i.d. Rademacher random variables independent of Wr, ..., W,.

1. Let F be a VC-subgraph of functions with fo(w) = 0 € F, a finite VC dimension
VC(F), and a measurable envelope F such that S = E[F?| < co. Then:

nZa

where C = 44/12 f01 V/1/(2e3/2) + log(16e) + 2log(1/u)du < 34.

VC(F)S

n

sup
feFr

2. In the special case when F = {f(z) = 1(x € G)F(z) : G € G}, for a VC-class of sets
G and an arbitrary measurable function F with S = E[F?] < oo, the above holds with
C =412 [ \/1/(2¢372) + log(4e) + 21og(1/u)du < 29
Proof. Denote G(f) =n=Y23"" & f(W;). By the Law of Iterated Expectations,

LGO(J[)H = %EW{L [Eg? [?E}Q’Go(f)}u (A.2)

B sup |~

feFr

We will use a chaining argument to bound the right hand side of (A.2). Let n = 2||F]|,,,,
and define Fy = {fo} and F; contain centers of the balls in the minimal 7277-cover of F
under |||, ,, so that |F;| = N(n277, F,||||,,,)- Let ¢; : F — F; be a map that for a given
f finds the closest element of F;. For any f; € Fj define a chain fy_; = ¢p_i(fr—i+1) for
l=1,...,k. Then,

k k

Go(fi) = ) (GY(f;) = GA(fi—1)) < Y max|GY(g) — Gh(d-1(9))l. (A.3)

gEF;

J=1 J=1

Let thy(x) = € — 1 and |||, denote the corresponding Orlisz norm. By Lemma 2.2.7.

in van der Vaart and Wellner (1996), the process GY(f) is sub-Gaussian for the metric

du(f1, f2) = |Ifi = folly,,, and satisfies [|G)(f) — G)(9)lly, < V6IIf = gll,,,, conditional on

W, By Lemma A.2, the preceding sentence, and the fact that ||g — ¢;-1(g)||,, <7270,

E¢p max GY(9) = G (51 ()| < 3 (IF5]) maxger; [|GH(9) — Gh(65-1(9))]],,
<V6 -0 (N027, F||H]y,)) - n2707 0.

(A4)
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Therefore,

k
By {SUP |G2(f)|] < \/62¢51(N(772*j,_7.‘, [-{ly.))m2=0 Y

fEFk

M/ G (N (e Fo |l de

[1Fl2,,
=6 [ flog(N (e F ) + 1

(b) 12,0,
< 4\/12/ \/logN(E,]:,|!'Hz,n)d€
0

where (a) follows from counting the rectangles under the curve ¢ — ¢, (N (e, F, 1l5.))s
and (b) follows from log(z + 1) < 2log(z) for z > 2. Conditional on W}, the process G? is

separable, so by letting £ — oo in the previous display we conclude that

£l

B [smp16a0] < 132 [ flo N s (A.5)
fer 0

Denote V = VC(F) and L = (2y/e)~". With a change of variables u = ¢/ [|Fl,,,

1
[1E1l2,n
| e NEF e = 1Pl [ flog NG lIFl, e (A0
0

Applying Lemma A .4 (or Lemma A.6 for the special case) with r = 2 and @ = P,,

log N (w||Fly,, « Fo|ll]s,) < log(LV) + Vlog(16e) +2(V — 1)log (1)

_ v (LlogW) + log(16e) + 2% log (1)

u

v

V (L/e +log(16e) + 2log (1)) ,
where the last line uses the fact that log(t)/t < 1/e for all t > 0. Therefore,

1Fl2,

/ \/logNz—: F || ||2n /\/L/e+log(166)+210g(1/u) \/V||F||;n (A.7)

0
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Combining (A.5) and (A.7), we obtain

Een |sup |G }g(] 1alballs
o [ 2| < oyVIIFIE,

where C' = 4/12 fol VV/e/2 +log(16€) + 2log(1/u)du (or the same expression with 4e in-
stead of 16e in the special case). By (A.2) and Jensen’s inequality,

anZ

VCO(F)S

sup
feF

n

which concludes the proof.

A.3 Proofs of Theorems 1 and 2

We break the proof of Theorem 1 into a sequence of lemmas. The first lemma establishes
an upper bound on expected regret for the oracle EWM rule, assuming full knowledge of the
nuisance functions in I'(W). It is a version of Theorem 1 in Kitagawa and Tetenov (2018)

with a precisely pinned down constant.

Lemma A.8 (Regret Bound for Oracle EWM). Let Assumptions 2.1 and 2.2 hold, 11 have
a finite VC-dimension, and V,(r) = L3 m(X)T(W;). Consider the oracle EWM policy
rule
TEWM ¢ argmax V,, ().
el

Then, for any P € P,

for a universal constant C <58

~EWM

Proof. Since 7, maximizes V,, (),

V(W*) _ V(ﬁEWM) _ V(ﬂ'*) f/n( EWM) + V ( EWM) V<7~TEWM)

n

Thus, since E[V, (7%)] = V(7*),



Applying Lemma A.1 to the class F = {m(z)['(w) : m € II}, which has an integrable envelope
|T'(w)], and then applying part 2 of Lemma A.7 implies the stated result. |

The second Lemma establishes that the doubly-robust and oracle welfare estimates are
close to each other uniformly in 7 € II. It is a non-asymptotic version of Lemma 4 from

Athey and Wager (2021), which we prove under weaker assumptions.

Lemma A.9 (Uniform Coupling). Let assumptions 2.1, 2.2, and 2.3 hold, and II have finite
VC-dimension. Let Vn(ﬂ) be computed as in Algorithm 1 (denoting the sample size by n, for
simplicity) and V,(r) = 1 37 7(X;)D(W;). Then,

E {sup V() —

well

n(ﬂ-)|:| < Rl,n + R2,n + R3,n7

where

VO(Ma((1— J1)n)

ni+<s ’

Rl,nzé\/J-BZ-

202 +1) VO(Ma((1—J-Y)n)
2 1+Cm

Ron=Cy[J

Y

and C' < 58 is a universal constant.

Proof. Denote the indices of the observations included in j-th fold by I;, and recall that (=7,
T~ and g(—ﬂ denote the first-stage estimators computed using all observations excluding
the j-th fold. For i € I;, denote [, = f‘(_j)(I/Vi), I, = ['(W;), and write the difference [, - T,
as a sum of three terms
0, =T =Y —m(X,, D) (" (Xi, Z) — 9(Xi, Zy))
+ Tm(fj)(Xia Di) - Tm(Xi, Di) - Q(Xi, Zi)(m(_j) (Xi, Di) - m(Xi, Dz))
— (0"(Xs, Zi) — 9(Xi, Zi) () (X4, D) — m(Xs, Dy)).

Denote the corresponding summands in V,,(7) — V,,(7) by Sy(7), So(n), and Ss(7). We will
bound each term separately.

First Term.  Write Si(7) = ijl Sij)(ﬂ'), where %59) (7) is equal to
1 o
— Y w(X) (Y = m(Xi, D) (3 (X, Zi) = 9(Xi, Z2)).

n .
T el
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By the law of iterated expectations, (recalling that Z L (Y(0),Y (1), D(0), D(1)) | X)
E[n(X:)(Yi = m(X;, D))(§7(Xi, Z;) — 9(Xi, Z)) | )] = 0.
Denote
Vin(j) = E [n(X;) - E[(Y; — m(X;, D)) X;, Di] - (§©(Xs, Zi) — 9(Xi, Z3))? | 7))

Applying, conditional on ¢, Lemma A.8 with (Y; —m(X;, D;)) - (§(Xi, Zi) — 9(Xs, Z;))

in place of I';, we obtain

g, {supw(”( )

n; well

1

g(_j)} <z \/ VCViali)

By Assumption 2.3, 7(X;) < 1, and the law of total variance,

Ep[Via(j)] < B2a((1_—‘]_l)n).

nSs

Using the last two displays, the law of iterated expectations, and Jensen’s inequality, for each
je{l,...,J}, we obtain

Ve(Il —J )n)
R R e

Since supremum is sub-additive, using the inequality 37 FIRRVAUYAIES V/J, and summing over

& [sup\sl(w)\] <6\/J-Bz. VC(Ma((1 - J-Hn)

mell n1+<g

7, we obtain

Second Term.  As above, write Sy(m) = Z;’zl Séj)(ﬂ), where %Séj) (m) is equal to

— Z (T (Xi, Di) = Ton(Xs, Di) — (X, Z3) (™ (X3, D) — m(X, Di)))

zEI

Denote the individual summands in the previous display by f(W;; 7). By Assumption 2.1

and the law of iterated expectations,

Eplf(Wi;m) [ ™, 7505] = 0.
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Denote Vo,,(j) = Ep[f(Wi;m)?|m 9, 7.»]. Applying, conditional on 7= and 7,
Lemma A.8 with (7, (X;, D;) — T (Xi, Di) — g( X4, Zi) () (X5, Dy) —m(X;, D;))) in place

of I';, we obtain
g(—j):| < U\/VC(H)VQ,n(j)

1

EEFMW%WﬂI
n;

well

Using 7(X;) < 1, (a +b)* < 2(a* + 1), and Assumptions 2.1, 2.2, and 2.3, we obtain

a((L—J"")n) L Lla@-— J‘l)n)) _ 2+ Da((L = J )n)

1
ném n? ném 7?2 ném

anmun<2(

By the last two displays, the law of iterated expectation, and Jensen’s inequality,

R R e

Since supremum is sub-additive, summing up across j, using the fact that Z;’:l Vnj/n < VJ

E [Sup ISz(w)I} < 6\/J. 20 +1) VOIa((1 — J7Y)n)

mell n? nttem

Third Term. Let j(i) denote the fold in which observation i belongs. We have:

53(%)2—%ZW(Xi)( X Zi) - 9(X, Z)) (DX, Di) = m(XG, D))

By Cauchy-Schwartz inequality (in R™) and 7(X;) < 1,

SUpeqy | S3(m \/ Yo (GTIN(XG, Zs) — 9(X5, Z;))?
\/ S (IO (X;, D) — m( X, D).

Taking expectations on both sides, using Cauchy-Schwartz inequality, and recalling Assump-

E [Sup |53(7r)|} < \/ a((ln—gmij)n){

well

tion 2.3, we obtain

and the proof is complete. |

The third lemma is a finite-sample version of Theorem 1 from Athey and Wager (2021),

which we prove under weaker assumptions.
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Lemma A.10 (EWM with Doubly-Robust Welfare Estimates). Let Assumptions 2.1, 2.2
and 2.5 hold, and Il have finite VC-dimension. Let Vn(w) be computed as in Algorithm 1,
and

7, € argmax V, ().
well

Then,

Rp(i) < T VEpE@] -/ LCW

+ 2R,
n

for a universal constant C' < 58 and R,, = o(n"'/?) as defined in Lemma A.9.

Proof. Recall that V,,(7) = L 3" 7(X,)['(W;). Note that

1=

V(r*) = V() =V(r*) = Vi(fn) + Vi(#) — V(7n)
S V(1) = V() + Vi(71n) = V(#n) + SUDen | Vi () — Vi)

<AV (@) = Va(m)} + supger [Va(m) = V()| + 25up ey [Valm) = Va(m))-
Taking expectations and applying Lemmas A.8 and A.9, we obtain

Rer) < OVE WPV om,,

where R,, = o(n"'/?) defined precisely in Lemma A.9. [

The fourth lemma establishes an upper bound on expected regret for the “oracle AWM”

rule computed assuming full knowledge of the nuisance functions in I'(W).

Lemma A.11 (Adaptation for Oracle AWM). Let Assumptions 2.1, 2.2, and 2./ hold, and
TAWM be defined as in Algorithm 2 but with V,(7) = L3 m(X)T(W;) instead of V(7).

For P € P, let 7y, € argmaxy V(mw) and P, = {P € P : 7}, € ll;}. Then, for any P € Py,

(™) < ip (02O TGS 4 v - Vit ) ) [ S0

where C < 58 is a universal constant.

Proof. To simplify notation, we suppress the dependence of population quantities on P. To
distinguish between the oracle and feasible estimators, we use the notation A instead of A

for all in-sample quantities. Further, we denote 7 € argmax, .y, V(7), and

VI (1) = 1 > w(X)T(W7).

n
H en
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For any k < K, we can expand
V() = V(@"M) = V(r*) = V()
+ V(m) = Qx
+Qp — V(@mMM).
Recall from Algorithm 2 that k = argmaxc x Q. Thus:
V() = Qp < V(m) — Qs
= {V(m) = VED + VET) = VIO E))

By the Law of Iterated Expectations, the second summand has mean zero. By Lemma A .8,

the mean of the first summand is bounded by

Ep[V(r;) — V(7)) < C\/Ep[L(W)2]

Next, recall from Algorithm 2 that #4WM = 7\¥

Q= VE™M) = VI EP) — V(EP) < mad VIOEP) - V(F)).

Since

Ep[(VI(77) - V(7E))? |7F] < ———L=,

using Lemma A.2 we obtain:

B [ pan{ P 7) — V| < VR mas BV () — V() < | EETHEE,

k<K k<K ny

Combining the above results, we obtain, for any k£ € {1,..., K},

- . . — V(11 KEp[I'(W)2
Rp(ity"™M) < Vp(rp) — V(i p) + C\/EP[NWW\/ n(E 2 \/ PLH( Sl
Taking a minimum over k£ < K gives the stated result. ]

The last lemma addresses the remainder terms.

Lemma A.12 (Remainder Terms). Let (W;)icg and (W;)icg denote the estimation and

hold-out samples. In the notation of Lemma A.9,
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1. For every fized w € 11,

Ep[VE (1) — VB (7)] < Rspy,.

2. For any frl(cE) computed using the estimation sample,

Ep[VI (77) — VI (2] < Ry -

Proof. The first claim follows from the proof of Lemma A.9. Recall the terms S;(7), Sa(m),
and S3(m) introduced there. The expectations of the first two terms are equal to zero, and
the expectation of the third term is shown to be less than Rj,,,, .

Now, we term to the second claim. To simplify the notation, we replace the arguments
of the functions I'(W;), m(D;, X;), 9(Xi, Z;), Tm(D;, X;), and their estimated counterparts,
with a subscript ¢ reflecting the observation (from the hold-out sample) at which they are
evaluated. Moreover, we drop the superscript (E) since all quantities are estimated on the

same sample. With this in mind, we can expand [, — I'; as a sum of three terms:

A
A~

Ly =T = (T — T — gi(Ms — my)) + (Y5 — m3)(Gi — gi) — (M — m4) (s — 94)-

Let Si, Sy and S5 denote the corresponding sums in V(H)(fr,(gE)) - V(H)(fr,(gE)). Then, by
Assumption 2.1-2 and the Law of Iterated Expectations,

E[Si|(Wi)iep] =E [ﬁk(Xi) E[(Tii — T — 9i(i — ma)) | X, (Wh)ien] | (Wi)ieE] =0.
Further, by the Law of Iterated Expectations and conditional exogeneity of Z;,
E[Sy | (Wi)icr] = E [ﬁk(Xz) -E[Y; —m; | Xi, Di, (Wy)icg] - (9 — 9i) | (Wz)zeE] = 0.

Finally, by Cauchy-Schwartz inequality (in R™7) and 7 (X;)% < 1,

Ss <\ iy Tien (it — i -\ (s — 90)*

Taking expectations on both sides, applying Cauchy-Schwartz inequality again, and using

the Law of Iterated Expectations, we obtain

E[S3] < VE[(h; — m:)?] - E[(9: — 91)] < B3y

and the proof is complete. |
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A.3.1 Proof of Theorem 1

Recall that #24"WM = ﬁ’gE), 7™ € argmax, .y V (), and 7y € argmax,p, V(7). Consider an
expansion
V() = V() = V(r") = V() + V() - Q+ Q= V(E"). (A8)

—— ,
(I (IT)

Consider term (I). Since Qk > Qy, for any k € {1,..., K}, we can bound

(1) <Vi(m)—Qx
< (V0 V) () V) (o0t - i)

By Lemmas A.10 and A.12, and the Law of Iterated Expectations,

— VO(I)
ng

+ 2RnE + RB,nEa

where R, and Rs,, are as defined in Lemma A.9.

Next, consider
(1) = {VEE) - VIED o+ TG - VE) (A9)
For the first summand in (A.9), we can bound

Ep [VOD(FD) = VIED)| < Ep [maxper (VEO(F) = V()]

< K max<x Ep [‘V(H)(ﬁ]iE)) _ V(H)(ﬁ]iE))H .

To bound the above expression, using the notation of Lemma A.12 and omitting the super-

script (E) for the first-stage estimators, for simplicity, we expand

I,—T; = (Tii — Ty — gi(my — my)) + (Y; — mg) (Gi — gi) — (M — my)(Gi — ).
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By the triangle inequality,

Ep [V a2) - VO )] =Ep [| 3L Sy #7(X)(E: - T)

nH

[ (B .
<Ep || Lien 1 (X0 (Fi = Tini = s = my))|

[ ~(E .
FEp || T 17 (X = m)(3: - 90|

nH

I ~(E “ .
+Ep I % DicH W/(f )(Xz‘)(mi —m;)(gi — 9i)

]

By Assumption 2.1-1, the Law of Iterated Expectations, ﬁ,gE) (X;) < 1, and Assumption 2.3,
we obtain
1 . . 2
Ep [ ng ZieH 716 (Xi) (T — Ty — Gi(1 — mz))‘ }

<Ep [% ZieH(Tm,i — T — Gi(1; — mi))z]
< %EP[(Tfn,i — T — Gi(1 — m;))?]

< o (Bp[(Ting — Tm,d)’] + Elg? (i — mi)?])

< 2, 41 a((1=J " Yng)
S ong n? (ng)om -

As a result, using the inequality E[|A[] < E[|A|?]'/2,

EP[

~(E A 241 a((1—J-Y)n
e Sien A7 (X0 (T = T — g = ma))|| < (20 2 B e ),

Using a similar argument, instrument exogeneity, and E[(Y; —m;)? | X;, D;] < B?, we obtain:

Er |

and thus

~(E ~
i DicH Wi(c )(Xz')(Yi —m;)(Gi — gi)

nH (np)%s 7

2 ~ a((1-J YH)n
} < EEp((Y; —ma)? (g — 9:)%) < 2 - AL ne)

Ep |

n (=T ng)
| <o b

Finally, by Cauchy-Schwartz inequality (in R"#) and ﬁ,(cE) (X;) <1,

~(E ~
LS en (X (Y = m) (G — g)

(E . .
% > 7T1(c )(Xi)(mz‘ —m;)(Gi — 9i)

S \/ﬁ Dien (M —my)? - \/ﬁ > ien(Gi — 9i)?

Taking expectations on both sides, applying Cauchy-Schwartz inequality and the Law of
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[terated Expectations,

Ep |

e S (X e = m) (35— )| | < V/Ep [0 — )T BllG — 9] < A0l

Combining the above results, we obtain

Ep [V P - VD] < (f2- e B Cosna)y frn pe sl e 4Ry

'nE 1+Cm
where Rj,, is defined in Lemma A.9 (and the preceding display).

For the second summand in (A.9), arguing as in the proof of Lemma A.11,

=) ~(E ~(E KVar w
Ep [V (#P) - V()] < /e,

Combining the bounds on (I) and (II), we obtain, for any k € {1,..., K},

Rp(#2"M) L V(rp) — V(mg) + C/Ep[T \/VC<Hk> n \/KWZS(W)) “ R

where R,, = o(n~'/?) is given by

~ n n2+1 a( —J)n
Ry = Ry, +3Rsn, + \/2 cne e ne) o foe . praOote) (A0)
For any P € Py, V(np) — V(7)) = 0, so the above display implies the stated result. |

A.3.2 Proof of Theorem 2

Let P denote the class of DGP’s satisfying Assumption 2.2. Below, we construct a subclass
of P for which the worst-case regret can be bounded from below by a term proportional to
B/ny/(VC(II) — 1)/n. Let 1, ...,xq, where d = VC(II) — 1, be a set shattered by II with
the largest possible cardinality. Let

X e {261,...,326[}, P(X:xj) =

1
da’
Te{0,1}, P(T=1)=p, T L(X. YY)

Further, let Yy = 0, and, given a parameter vector ¢ = (cy,...,cq) € {—1,1}%,
A wp. 2(14¢2
Vi|X =2 = P f( i)
A wp. 5(1-¢%)
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where 7/A < 1, and w.p. stands for “with probability.” Then, for Y =TY; + (1 — T)Yy,

E[Y?] =pA?,
7(z;) =EMNM —Y|X = z;] = v¢;.

For any ¢ € {—1,1}¢, the joint distribution of W = (Y, X, T constructed above belongs to
P as long as p € [,1 — n] and pA? < B% We will specify suitable p and A below.

Let Pe = {Pwjc= : ¢ € {—1,1}%} C P denote the set of distributions of W constructed
above. Let 7} denote the optimal treatment rule when the distribution of the data is P,
and w7 = 7p . By construction, mi(z;) = 1(c; = 1) € 1I, since the class II shatters
{x1,...,24}. For any data-dependent policy 7,

=i

V(nh) —

C

Z o(5) # Ta(2)).

&IQ
&I\Q

Then, for any distribution p € A({—1,1}9),

sup Ep[V(7p) = V()] = maxEp[V(7p) = V(7))

PePpy PePe

— %Z//l(w*(arj) # Tn(25))dPwnic=cdp(c) (A.11)

VZPW 0, (1(C; = 1) # 7))
= H;fPWI”, o, (1(Cj = 1) # n(W7)).

Here, Pyr ¢, (1(C; = 1) # w(W7}')) is the probability of misclassification of 1(C; = 1) using
W, By Theorem 2.1. in Devroye and Lugosi (1996), the infimum is attained by the Bayes
Classifier, 7*(W7") = 1(P(C; = 1|W]") > 0.5), and is equal to

P(C; =1) #m* (W) = 3P(P(C; =1[W]") <0.5[C; = 1)

P
(A.12)
P(P(C; =1|WP)>05|C; = —1).

1
2
1
+ 3

We bound this quantity from below for a specific distribution u(-) of C. Let C; € {—1,1}
beiid. with P(C; =1) =1/2and C = (C},...,Cy). The joint distribution of W = (Y, X, T')
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given C' = c is

1-p);  y=0t=0
- y=-At=1
Moreover,
(1-p)k y=0,t=0
24 y=-At=
and

PY =y, X =2, T=t|C;=1) =1k#)PY =y, X =2;,T=1)

+1k=7){50+3E y=At=1 ,
-3 y=-At=
so that
1 y=0,t=
PY =y X=x,T=t|C;=1) ‘ ,
= 1(k 1(k = x — _
PY =y, X =2, T =1) (k #7)+ 1( 7) I+4 vy At=1
-3 y=-Ay=
Therefore,
pPWwWr|C; =1)P(C;=1) 1 Y\ Y\N;
P :1 WTL = J J = — 1 — 1__
(€ =11 P(WP) ) (-2)

where NJ” = #{i: X; = 2;,Y; = AT, =1} and N; = #{i: X; = 2;,Y; = —A,T; = 1}. The

tuple (N;°, N;,n — N7 — N7) has a multinomial distribution

P(N;r:k’l,N{:k2|Cj:1)

SO Gerp) Go-ps) 07 e

Consider the first summand in (A.12). Denote a = 7y/A < 1, for brevity, and proceed

45



conditional on C; = 1. Note that

P(P(C; = 1|W1) < 0.5) = P((1+a)"i (1 o)™ <1)

P
P((1—a®)N < 1N < Nj)-P(NS <N;)
P

Z
j j j
_ + -
= P(N;” < N;).
Let Df = 1(X; = z;,Y; = AT, = 1), D] = 1(X; = z;,Y; = —A, T, = 1). Then,

(2

D; )] < p/d. Letting Z, denote the studentised version of n=* > (D;" — D;) and ®()
denote the Standard Normal CDF, using Berry-Esseen inequality we obtain

E[D;” — D; ] = ap/d, Var[D;r — D;] = p/d — (ap/d)?, and, by direct computation E[|D;" —

P(NF <N;7) =Py (Df —D;) <0)

(2

—plz __—+/nap/d
" \/p/d (ap/d)?

—v/nap/d

_ —Vmnap/d |\ _ K p/d
\/p/d—(ap/d)2 ) v (p/d)/2(1—a?p/d)3/2”

WV

where K < 0.469 Shevtsova (2013). Choose a =

enough to ensure a < 1. Then,

n B B c _£ p/d
s gN'D@( m) Vi (L= /)il

It is easy to verify that the second summand in (A.12) can be bounded in exactly the same
way. Thus, recalling that v = aA = ¢4 [ ,

n

S vas e At e V_ K _Vp/d
ISDEEEP[V(WP) V()] 2 VAR {(I)< m) \/ﬁ(l—cz/n)‘g/?}'

\/7 for some ¢ € (0,1) and n large

SI

Choosing p = n, A = B/,/n, and simplifying,

sup Ep[V(np) — V(7)) 2 B/, c-d (_#) B Kec

sup 2V VI—&n) 01— Emnpe

For n > 5, the maximum value of the function ¢ — ¢®(—c/\/1 —c?/n) is at least 0.16
(attained at some ¢ € [0.5,1]), and the function ¢ — ¢/(1 — ¢*/n) is monotonically increasing

on ¢ € [0, 1] with the maximum value of at most 1.2. Plugging in these values and K = 0.469



gives the final bound

B /d 0.6B
sup Ep[V(mh) — V(7m,)] = ().16_\/i_ :
Pellz PV (7p) ()] aVn n

valid for n > max(5, %) Since the lower bound is valid for any measurable map 7,,, we may
take an infimum over all such 7,,. Repeating the argument with I, and Py in place of II and

P gives the stated result.

A.3.3 Proof of Remark 2

Lemma A.13 (Semiparametric Efficiency of Welfare Function). Suppose that

(i) The covariate space X is bounded, the model P satisfies Assumption 2.2 and all P € P
are dominated by a sigma-finite measure . with a bounded density dP/dQ < Cg < 0.

(i) The entropy integral E(II), defined in (9), is finite. The class II contains a countable
subclass Iy such that for each m € 11 there exists a sequence mo,, such that mom,(x) —

m(x), for each x.
(iii) The tangent space T(P) is a closed linear subspace of L3(P).
(i) Vp(m) = Ep[n(X)L(W)], and ¢(m)(W) = n(X)T(W) = Ep[r(X)T(W)] € T(P) .

(v) Letting V() denote a feasible estimator and V (m) = L3 m(X)T(W;) an oracle one,
SUpent |V () = V(m)| = op(n~'72).

Then, V (-) is semiparametrically efficient for Vp(-) in Cy(II), and
VaV() =V() =4 G(),

where G(+) is a tight centered Gaussian process with Cov(G(my), G(m2)) = Ep[t(m1)(m2)].

Proof. We will verify the conditions of Theorem 5.2.1 in Bickel, Klaassen, Ritov, and Wellner
(1993). We need to establish that P+ Vp(-) is (weakly) path-wise differentiable, derive the
form of the efficient influence function, and argue that V() attains the efficiency bound.

Fix some P € P, and let {P;,} C P denote a regular parametric sub-model with a score
function h € T'(P) and density p;, = dP;;/dQ satisfying

/(M - %\/ﬁh)de 0.

t
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It is without loss of generality to assume that A is bounded, since the set of all bounded
functions is dense in LY(P). Using linearity of 7 + Vp(m), boundedness of m(z) and h, and
Cauchy-Schwartz inequality, it is straightforward to verify that

VPt,h (ﬂ-) - VP(T‘-)

Slelg ; — Ep[¢(m)h]| — 0.

Thus, P — Vp(+) is path-wise differentiable with derivative V},(h) : T(P) — C(II) given by

Vi (h)(m) = E[(m)h].

By the Riesz-Markov theorem, every bounded linear functional L : C'(I) — R takes the form

L(v) = / o(m)dp (),

where g, is a finite-signed Borel measure on II. Applying Fubini’s theorem twice, we obtain

L) = [ Balb(mhldua(m) = Erlu(7,, )]
I

where 7 () = [ m(x)dpr(r). Thus, ¢(71) is the canonical gradient of P — Vp(-) in the

direction L. Define a mapping ¥ : W — C(II) as

Y(W)(r) = m(X)L(W) — Ep[m(X)T(W)].

By Fubini’s Theorem, L(¥(W)) = ¢(7)(W), so W(W)(-) is the efficient influence function
for V(). Now, consider the oracle estimator V(7). Assumptions (i)-(ii) ensure that the
conditions of Theorem 3.10.12 in van der Vaart and Wellner (1996) are met, and thus V(-)
is a regular estimator. Since the influence function of V(-) is precisely W(W)(-), by Theorem
5.2.1 in Bickel, Klaassen, Ritov, and Wellner (1993), it is semiparametrically efficient and
converges weakly to G(-). By Assumption (v), V(7)) and V (r) are first-order asymptotically

equivalent uniformly over 7 € II, meaning that V(T(') is semiparametrically efficient. |

48



