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Abstract

We consider the problem of learning optimal treatment policies from observational

data. We propose an algorithm that combines doubly robust welfare estimation, to

accommodate rich covariates and unknown propensity scores, and sample splitting, to

adaptively select policy complexity. We show that the resulting treatment rule achieves

the minimax-optimal rate of convergence in expected regret while selecting a suitable

policy complexity with nearly oracle performance. Our analysis avoids unnecessar-

ily restrictive assumptions commonly imposed on the data-generating process or on

first-stage nonparametric estimators and yields a sharp characterization of the relevant

universal constants. The practical performance of the proposed method is demonstrated

in a simulation study.

∗This is a revised version of a coauthored chapter in our Ph.D. dissertations at UCLA; see Ponomarev
(2022) and Shi (2022). We thank Jinyong Hahn, Rosa Matzkin, Andres Santos, Denis Chetverikov, and
seminar participants at UCLA for valuable feedback.
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1 Introduction

Problems of treatment choice are ubiquitous in economics, arising in settings such as the

provision of subsidies to disadvantaged households, bail decisions in pre-trial hearings, loan

approval by banks, scholarship allocation by colleges, and personalized pricing by online

retailers. In such environments, a decision-maker (DM) seeks to design a treatment rule

that assigns each individual to one of several treatment options based on observable char-

acteristics in order to maximize welfare (Manski, 2004). Designing an effective treatment

rule is challenging for two main reasons. First, the DM often relies on observational data,

which requires controlling for a rich set of covariates to identify the relevant welfare function.

Second, the choice of policy complexity is constrained by institutional requirements such as

transparency or non-discrimination and by a fundamental bias-variance trade-off: while more

flexible, personalized rules can potentially achieve higher welfare, they are harder to estimate

reliably from the data.

In this paper, we propose a policy learning algorithm that tackles the aforementioned

practical challenges and has strong theoretical guarantees. Building on the Empirical Wel-

fare Maximization (EWM) framework of Kitagawa and Tetenov (2018), the proposed algo-

rithm combines two key components: doubly-robust welfare estimation (Athey and Wager,

2021) and model selection (Mbakop and Tabord-Meehan, 2021). Double robustness enables

the use of flexible nonparametric estimators of the propensity score and outcome regression

functions — obtained, for example, using modern machine learning methods — and ensures

that the welfare function is estimated at the parametric rate under mild consistency and rate

conditions (Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018).

Moreover, when the doubly-robust estimator is semiparametrically efficient (Chernozhukov,

Escanciano, Ichimura, Newey, and Robins, 2022), we show that this efficiency translates into

sharper performance guarantees even in finite samples. To choose an appropriate policy

complexity, we consider a finite number of candidate policy classes with varying functional

forms and complexities, and evaluate the best-in-class policies out-of-sample. The resulting

procedure adapts to the optimal policy complexity for the underlying data-generating pro-

cess (DGP) and achieves nearly oracle performance. For this reason, we call the proposed

algorithm “Adaptive Welfare Maximization” (AWM).

Following the bulk of the existing literature, we focus on utilitarian (linear) welfare and

evaluate policy performance in terms of expected regret, defined as the expected welfare loss

relative to the optimal treatment rule in the population. Our contribution consists of two

main results. First, we derive a finite-sample upper bound on the expected regret of the

AWM rule, showing that it attains the parametric convergence rate and adaptively selects
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the optimal policy complexity by balancing estimation error against potential welfare loss.

We derive the bound under weaker assumptions than those typically imposed in the literature

and precisely pin down the universal constant. We also show that using a semiparametri-

cally (asymptotically) efficient welfare estimator leads to a tighter regret bound even in finite

samples. Second, we establish a new finite-sample lower bound on the worst-case expected

regret, which characterizes the fundamental performance limit of any data-dependent treat-

ment rule. The lower bound matches the upper bound up to constants, implying that the

AWM rule is minimax-rate optimal in expected regret. Together, these results provide strong

theoretical support for the proposed method.

To assess the practical performance of the proposed rule, we conduct a simulation study

in two practically relevant scenarios. In the first, several candidate policy classes contain

the true optimal policy, ranging from relatively simple to unnecessarily complex. Consistent

with our theoretical results, the AWM rule systematically selects the simplest relevant class

and performs comparably to an oracle rule that knows the correct policy complexity. In the

second scenario, none of the candidate classes is sufficiently rich to represent the optimal

policy exactly. In this case, the AWM rule adaptively selects increasingly complex policy

classes as the sample size grows.

This paper contributes to a large and growing literature on optimal treatment choice.

Early work focused on unconstrained policy classes and proposed treatment rulesbased on

the estimate of the conditional average treatment effect function. Manski (2004), Stoye (2009,

2012), and Tetenov (2012) studied minimax-regret rules; Dehejia (2005) and Chamberlain

(2011) considered a Bayesian approach; Bhattacharya and Dupas (2012) introduced a budget

constraint; and Hirano and Porter (2009) considered a limiting experiment. Related work in

statistics includes the so-called Q-learning and A-learning approaches (e.g., Murphy (2003);

Robins (2004); Qian and Murphy (2011); Shi, Fan, Song, and Lu (2018)).

This paper builds upon more recent literature focusing on policy classes with explicit

constraints on complexity, with either binary or multivalued treatments. This line of work

started with Kitagawa and Tetenov (2018), who introduced the EWM framework with binary

treatments and showed that the EWM rule attains minimax-optimal rate of convergence for

expected regret if the propensity scores are known. To accommodate observational settings

with unknown propensity scores, Athey and Wager (2021) introduced a doubly-robust welfare

estimator and established similar, although asymptotic, regret guarantees. Mbakop and

Tabord-Meehan (2021) proposed regularizing the EWM objective to choose among several

available policy classes and showed that the resulting treatment rules have oracle properties.

Zhou, Athey, and Wager (2023) further extended the analysis of Athey and Wager (2021)

to multivalued treatments, and Fang, Xi, and Xie (2025) combined it with model selection.
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Our work builds upon the same ideas but imposes weaker assumptions and provides sharper

theoretical guarantees. A more detailed comparison with existing results requires a formal

setup, so we defer it to Section 3.3.

The rest of the paper is organized as follows. Section 2 gives the general setup; Section 3

describes the AWM procedure and presents the main theoretical results; Section 4 presents

a simulation study; Section 5 concludes. All proofs are collected in the Appendix.

2 Setup

We adopt the standard potential outcomes framework of Neyman (1923) and Rubin (1974).

Let d ∈ {0, 1} denote a binary treatment status, Y (0), Y (1) ∈ Y potential outcomes, and

X ∈ X a vector of covariates. Let m(x, d) = E[Y (d) |X = x], for d ∈ {0, 1}, and τ(x) =

m(x, 1) − m(x, 0), denote the conditional mean and conditional average treatment effect

(CATE) functions. Consider the problem of a utilitarian decision maker, who chooses a

treatment rule π : X → {0, 1}, based on covariates X ∈ X , to maximize the average welfare,

defined as

V0(π) = E[Y (π(X))].

The welfare function can be equivalently expressed as V0(π) = E[Y (0)]+E[π(X)τ(X)]. Since

E[Y (0)] does not affect the optimal policy π(·), we will work with the welfare gain,1

V (π) = E[π(X)τ(X)]. (1)

The first-best policy, πFB(x) = 1(τ(x) 󰃍 0), is to treat individuals for whom the CATE is

non-negative. However, without further restrictions, such policy may be overly complicated,

hard to reliably estimate and implement (e.g., with multiple continuous covariates), or simply

infeasible to the decision maker for institutional reasons (e.g., non-discriminatory laws). To

discipline the problem, we restrict attention to a pre-specified class of feasible treatment rules

Π (policy class), and focus on the constrained problem,

π∗ ∈ argmax
π∈Π

V (π). (2)

Choosing a suitable policy class Π is essential in applications, as we discuss below.

We assume that the welfare function can be identified from the observable data. To

accommodate endogenous treatment selection, we assume that instrumental variables Z ∈ Z
1All results below are formulated in terms of regret, V (π∗)−V (π), where π∗ represents the optimal policy

and π the implemented one. Since the term E[Y (0)] cancels out, the results are valid for V0(π) as stated.
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are available such that Z ⊥ {D(z)}z∈Z , Y (0), Y (1) |X, where {D(z)}z∈Z denote the potential

treatments. When D is exogenous, i.e., D ⊥ (Y (1), Y (0)) |X, we set Z = D in the notation.

We denote the observed data vector by W = (Y,D,X,Z) and assume that W ∼ P ∈ P, for

a class of distributions P specified below.

Assumption 2.1 (Identification).

1. There is a weighting function g(x, z) ∈ G that identifies the treatment effect function

τm(x, d) ∈ T via

EP [τm̃(X,D)− g(X,Z)m̃(X,D) |X] = 0,

for each m̃(x, d) ∈ M.

2. The welfare gain can be expressed as

V (π) = EP [π(X)τ(X)],

where τ(X) = EP [τm(X,D) |X].

The examples below, borrowed from Athey and Wager (2021), illustrate the scope of As-

sumption 2.1. The first example deals with a randomized control trial with binary treatment.

Example 1 (Exogenous Binary Treatment). Suppose that the observed treatment is bi-

nary, D ∈ {0, 1}, and exogenous, D ⊥ (Y (1), Y (0)) |X. Then, we may take Z = D, and

Assumption 2.1 holds with

τm(x) = m(x,1)−m(x,0);

g(x, d) =
d− p(x)

p(x)(1− p(x))
,

where p(x) = P (D = 1 |X = x) denotes the propensity score. Multivalued exogenous

treatments can be accommodated by modifying the moment function and complexity measure

for the policy class Π as in Fang, Xi, and Xie (2025). 󰃈

The second example discusses settings in which the observed treatment is endogenous,

e.g., due to non-compliance. As an example, consider a clinical trial in which patients are

randomly assigned to two different treatment protocols. Since the patients are at will to

choose any treatment they want after discussing the options with their doctors, some may

end up crossing over. In this case, the original randomly assigned protocol serves as an

instrumental variable for the actual treatment; see, e.g., Angrist, Gao, Hull, and Yeh (2025).
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Example 2 (Endogenous Binary Treatments with Binary Instruments). If a binary treat-

ment D ∈ {0, 1} fails to satisfy the conditional independence restriction in Example 1, the

CATE function cannot be point identified without further restrictions. To this end, suppose

there is an instrumental variable Z ∈ {0, 1} satisfying Z ⊥ (D(0), D(1), Y (0), Y (1)) |X, and

treatment selection is monotone, in the sense that D(1) 󰃍 D(0), almost surely (Imbens and

Angrist, 1994). Then, one can point identify the conditional Local Average Treatment Effect

(LATE) for a subpopulation of individuals with D(1) > D(0) via

LATE(x) = E[Y (1)− Y (0) |D(1) > D(0), X = x] =
Cov(Y, Z |X = x)

Cov(D,Z |X = x)
.

This causal parameter may not be relevant to the decision-maker who aims to maximize the

average welfare across all individuals. In some settings, it may be reasonable to assume that

that CATE(x) = LATE(x) (i.e, if individual treatment effects are suitably homogeneous).

Then, Assumption 2.1 holds with

τm(x) = m(x, 1)−m(x, 0);

g(x, z) =
1

∆(x)

z − s(x)

s(x)(1− s(x))
;

s(x) = P (Z = 1 |X = x);

∆(x) = P (D = 1 |Z = 1, X = x)− P (D = 0 |Z = 1, X = x).

If individuals select into treatment based on its perceived effectiveness, one might reasonably

expect that LATE(x) 󰃍 CATE(x). Then, implementing an optimal treatment policy based

on the assumption LATE(x) = CATE(x) would lead to treating excessively. If the treat-

ment is, for example, a medical test that is costly but potentially life-saving, this approach

may be justified. Under stronger type-independence restrictions, settings with multi-valued

instruments, such as “judge designs,” can also be accommodated. 󰃈

The final example illustrates that Assumption 2.1 accommodates settings in which the

observed treatment is non-binary. As an example, consider an online retailer that has ex-

perimented with various price levels and is deciding whether to offer a small discount to a

subset of its customers.

Example 3 (Continuous Treatments). Let D ∈ D be a continuous treatment variable, and

{Y (d)}d∈D denote the corresponding potential outcomes. Suppose the decision maker aims

to maximize

V (π) =
d

dv
E[Y (D + vπ(X))]

󰀏󰀏󰀏󰀏
v=0

,
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which is the average effect of an infinitesimal nudge following policy π(x) ∈ {0, 1}. Suppose
that D is exogenous in the sense that {Y (d)}d∈D ⊥ D |X. Denote

τm(x, d) =
∂

∂v
m(x, d+ v)

󰀏󰀏󰀏󰀏
v=0

.

Then, under regularity conditions, using integration by parts (Powell, Stock, and Stoker,

1989), Assumption 2.1 can be shown to hold with

g(x, d) = − ∂

∂d
log f(d | x),

where f(d | x) denotes the conditional density of D given X. 󰃈

In practice, the decision-maker observes a random sample W1, . . . ,Wn drawn i.i.d. from

a distribution P ∈ P, forms an estimator V̂n(π) of V (π), and solves

π̂EWM
n ∈ argmax

π∈Π
V̂n(π). (3)

This is precisely the EWM rule of Kitagawa and Tetenov (2018). In our framework, estimat-

ing V (π) requires estimating the functions m(x, d), τm(x, d), and g(x, z) (to which we will

refer as the nuisance functions) non-parametrically. Athey and Wager (2021) and Fang, Xi,

and Xie (2025) showed that using a doubly-robust estimator V̂n(π) leads to better perfor-

mance guarantees for π̂EWM
n . We adopt the same approach below. Under Assumption 2.1,

the welfare gain can be expressed as

V (π) = EP [π(X)Γ(W )], (4)

where

Γ(W ) = τm(X,D) + g(X,Z)(Y −m(X,D)).

The moment condition in (4) is Neyman-orthogonal with respect to m(x, d) and g(x, z),

and the corresponding doubly-robust estimator V̂n(π) can be constructed using cross-fitting

(Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018). To this

end, we impose the following assumptions.

Assumption 2.2 (DGP). All distributions P ∈ P satisfy the following conditions.

1. (Bounded moments) EP [Y
2] 󰃑 B2 < ∞, EP [τm(X,D)2] 󰃑 B2

τ < ∞.

2. (Overlap) supx∈X ,z∈Z |g(x, z)| 󰃑 η−1 for some η ∈ (0, 1/2).
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Assumption 2.3 (First-stage Estimators). The first-stage estimators m̂(x, d), τm̂(x, d), and

ĝ(x, z) satisfy the following conditions. For m ∈ M, τm ∈ T , and g ∈ G, for some 0 <

ζm, ζg < 1, with ζm + ζg 󰃍 1, and a positive sequence a(n) → 0 as n → 0,

EP [(m̂(X,D)−m(X,D))2]∨ EP [(τm̂(X,D)− τm(X,D))2] 󰃑 a(n)

nζm
,

EP [(ĝ(X,Z)− g(X,Z))2] 󰃑 a(n)

nζg
,

where (X,D,Z) is an independent sample drawn from P , for all P ∈ P.

Assumption 2.2 imposes relatively weak conditions on the underlying DGP. Unlike the

bulk of existing literature, we do not require boundedness of Y or sub-Gaussianity of the

residuals Y −m(X,D), conditional on X and D. The stated assumptions only require that

E[Γ(W )2] 󰃑 B2
τ + B2/η2 < ∞. Although such assumptions would make the proofs more

straightforward, they are not essential for the results, and thus we dispose of them. In the

familiar setting of Example 1, the above assumptions are equivalent to EP [Y
2] 󰃑 B2 and

P (D = 1 |X = x) ∈ [η, 1− η], for all x ∈ X .

Assumption 2.3 takes an agnostic view on how the estimates of the nuisance functions

are obtained. It can be satisfied, for example, by machine learning estimators such as Lasso,

random forest, or neural networks, under further assumptions on the latent low-dimensional

structure of the underlying DGP. Notably, unlike Athey and Wager (2021), we do not require

uniform consistency of the first-stage estimators, which implicitly requires further restric-

tions on the DGP, such as compact support or extra smoothness of regression functions and

propensity scores, and may be overly restrictive.

When solving for the EWM policy in practice, the decision-maker faces a familiar “bias-

variance” trade-off: A more complex rule may yield higher welfare but it is harder to estimate

from the data. To this end, Mbakop and Tabord-Meehan (2021) proposed treating the policy

class Π as a tuning parameter and using the existing approaches to model selection to obtain

a treatment rule with oracle performance guarantees. We also take this approach and propose

a data-dependent criterion that chooses a suitable complexity adaptively.

We assume that the decision-maker can choose between a finite number K of policy

classes Π1, . . . ,ΠK with different complexity. These classes may be nested, overlapping, or

non-overlapping. Since solving the EWM problem is typically computationally hard, we do

not pursue settings with infinite number of policy classes, as in Mbakop and Tabord-Meehan

(2021) and Fang, Xi, and Xie (2025), and focus only on the practical case with finite K.2 A

2Dealing with an infinite number of classes typically requires stronger restrictions on the DGP and addi-
tional penalization, as explained in Mbakop and Tabord-Meehan (2021).
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convenient way to measure complexity is via the VC dimension.

Definition 2.1 (VC-Dimension of the Policy Class). Let G be a collection of subsets of X . Say

that a set of points {x1, . . . , xd} ⊆ X is shattered by G if, for every subset S ⊆ {x1, . . . , xd},
there exists a set G ∈ G such that S = G ∩ {x1, . . . , xd}. The VC-dimension of G is the

cardinality of the largest set {x1, . . . , xd} that can be shattered by G. Any policy π ∈ Πk takes

the form π(x) = 1(x ∈ G) for some G ⊆ X , so we identify Πk with a collection of sets Gk

and define V C(Πk) = V C(Gk).

To state the main results, we assume that all relevant policy classes have finite VC

dimension. This assumption can be relaxed as we discuss in Remark 1.

Assumption 2.4 (Policy Complexity). V C(Πk) < ∞ for all k ∈ {1, . . . , K}.

The following examples illustrate.

Aggregation-based rules. Let Sk : X → Sk, with |Sk| = Nk < ∞, be a function that turns

a covariate vector X into a summary statistic Sk that can take Nk different values. Consider

the class of rules that depend on X only through Sk:

Πk = {π : X → {0, 1} : Sk(x) = Sk(x
′) =⇒ π(x) = π(x′)}.

Such class is finite and has VC dimension Nk. In the absence of further constraints on Πk,

the solution to (2) can be obtained analytically as

πk(s) = 1(τk(s) 󰃍 0),

where τk(s) = E[Y (1) − Y (0) |Sk = s]. By the law of iterated expectations, the function

τk(x) is identified as τk(s) = E [Γ(W ) |Sk = s], and its empirical analog can be computed as

τ̂k(s) =

󰁓n
i=1 Γ̂

−j(i)1(Sk(Xi) = s)󰁓n
i=1 1(Sk(Xi) = s)

,

which gives a closed-form solution to (3).

Linear threshold rules. Let xk ∈ Rdk be a subvector of x and consider the classes of rules

Πm,k = {πm,k(x) = 1(β′
m,kxk 󰃍 cm,k) : (cm,k, β

′
m,k)

′ ∈ Rdk+1},

for m = 1, . . . ,M . Then, set

Πk = {π(x) =
M󰁜

m=1

πm,k(x) : πm,k(x) ∈ Πm,k}
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The VC dimension of each Πm,k is at most dk + 2, while the VC dimension of Πk is finite

although harder to precisely quantify (see Lemmas 2.6.15 and 2.6.17 in van der Vaart and

Wellner, 1996). Kitagawa and Tetenov (2018) show that for such classes, the optimization

problem in (3) can be re-formulated as a Mixed-Integer Linear Program (MILP), which can be

converted into a sequence of linear programs via a branch-and-bound algorithm. Compared

with the preceding class, the regions in the partition of X here are estimated from the data

rather than set exogenously.

Decision trees. Trees represent decision rules recursively. A depth-zero decision tree,

T0(x), is a constant decision rule T0(x) = 0 or T0(x) = 1 for all x ∈ X . For any k 󰃍 1,

a depth-k decision tree Tk is obtained by specifying a splitting variable j ∈ {1, . . . , dX}, a
threshold t ∈ R, and two depth-(k − 1) decision trees TL

k−1, T
R
k−1, so that

Tk(x) = 1(xj 󰃑 t)TL
k−1(x) + 1(xj > t)TR

k−1(x).

Letting Πk denote the class of all depth-k decision trees over X ⊆ RdX , the VC-dimension

of Πk is of order 2k log(dX), see Zhou, Athey, and Wager (2023). The aforementioned paper

also proposes two methods for solving (3) in practice closely related to the branch-and-

bound algorithm used for solving MILP. Similar to linear threshold rules, decision trees infer

the appropriate partition of the covariate space X from the data, rather than setting it

exogenously.

3 Adaptive Welfare Maximization

3.1 Implementation

We start by introducing the proposed policy learning algorithm. The first step is to obtain

a doubly-robust estimator for the welfare function.

Algorithm 1 (Doubly-Robust Welfare Estimation).

Input: A data sample (Wi)i∈E of size nE.

Output: A welfare estimate V̂ (E)(π), for any fixed policy π ∈
󰁖K

k=1 Πk.

1. Randomly split the sample into J evenly sized folds I1, . . . , IJ of size ⌊nE/J⌋, distribut-
ing the remaining nE − J⌊nE/J⌋ observations arbitrarily.

2. For each j, compute the non-parametric estimators m̂(−j)(x, d), τ̂ (−j)(x, d), and ĝ(−j)(x, z)

using the J−1
J

nI observations in all folds except for j.
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3. For each i ∈ Ij, for each j ∈ {1, . . . , J}, compute

Γ̂(−j)(Wi) = τ̂ (−j)(Xi, Di) + ĝ(−j)(Xi, Zi)(Yi − m̂(−j)(Xi, Di)).

Note: If the propensity score p(Xi) is known, it may be plugged into ĝ(−j)(Xi, Zi).

4. Compute the final stimator

V̂ (E)(π) =
1

nE

J󰁛

j=1

󰁛

i∈Ij

π(Xi)Γ̂
(−j)(Wi).

󰃈

Next, we describe the main algorithm. Following Mbakop and Tabord-Meehan (2021),

the idea is to choose the optimal policy complexity using sample-splitting and compute the

corresponding EWM rule.

Algorithm 2 (Adaptive Welfare Maximization).

Input: Data sample (Wi)
n
i=1; Policy classes Πk for k ∈ {1, . . . , K}.

Output: A policy π̂AWM
n : X → {0, 1}.

1. Randomly split the sample (Wi)
n
i=1 into the estimating (Wi)i∈E and hold-out (Wi)i∈H

samples of sizes nE and nH . Let the superscripts (E) and (H) indicate that the corre-

sponding object was computed using each of the two samples correspondingly.

2. For each policy class Πk:

(i) Compute the EWM policy using (Wi)i∈E,

π̂
(E)
k = argmax

π∈Πk

V̂ (E)(π),

where V̂ (E)(π) is computed as in Algorithm 1.

(ii) Evaluate its performance in the holdout sample:

Q̂k =
1

nH

󰁛

i∈H

π̂
(E)
k (Xi)Γ̂

(E)(Wi).

Note: Computing Γ̂(E) here does not require cross-fitting: the first-stage estima-

tors m̂(E)(x, d), τ
(E)
m̂ (x, d), and ĝ(E)(x, z) are computed using the full (E) sample.
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3. Select k̂ = argmaxk∈{1,...,K} Q̂k and define

π̂AWM
n (x) = π̂

(E)

k̂
(x).

󰃈

The downside of using a hold-out sample is that a share nH/(nE + nH) of observations

is used only for out-of-sample evaluation. In Appendix A.1, we provide a cross-validation

procedure that alleviates this concern but is more computationally intensive. The result-

ing treatment rules have exactly the same theoretical guarantees and perform similarly in

simulations, with the CV-rule being consistently slightly better.

3.2 Theoretical Guarantees

To evaluate the performance of the AWM rule, we compare its welfare with the maximum

welfare attainable within the class of policies Π ≡
󰁖K

k=1 Πk. Denote π∗
P ∈ argmaxπ∈Π V (π)

and π∗
k,P ∈ argmaxπ∈Πk

V (π), where the subscript highlights the dependence of the policy

rules on the underlying data-generating process. Note that by construction, π∗
P = π∗

k,P , for

some k. Since the welfare under π̂AWM
n is a random quantity, we focus on the expected regret :

RP (π̂
AWM
n ) = EP [V (π∗

P )− V (π̂AWM
n )], (5)

where V (π̂AWM
n ) = EP [π̂

AWM
n (X)Γ(W ) | π̂AWM

n ]. This criterion can also be viewed as risk un-

der a specific data-dependent choice of the loss function ℓP (π, π
′) = |VP (π)− VP (π

′)|, which
measures the misclassification loss in welfare units. Other loss functions can be accommo-

dated under suitable modifications of the moment conditions.

We prove two key results regarding the performance of AWM policy rule. Our first result

is an upper bound on expected regret.

Theorem 1 (Regret Upper Bound). Let Assumptions 2.1–2.4 hold, and π̂AWM be computed

as in Algorithm 2. Then, for any P ∈ P, for all n large enough,

RP (π̂
AWM
n ) 󰃑 min

k󰃑K

󰀕
C

󰁶
EP [Γ(W )2]

nE

󰁳
V C(Πk) + V (π∗

P )− V (π∗
k,P )

󰀖
+

󰁶
KEP [Γ(W )2]

nH

+Rn,

(6)

where C 󰃑 58 is a universal constant, and Rn = o(n) is the remainder term explicitly

computed in Equation (A.10).

The term
󰁳

EP [Γ(W )2]/nE in (6) reflects two desirable properties of the welfare estimator:

semiparametric efficiency and double-robustness. To see a connection with efficiency, note

12



that EP [Γ(W )2] = VarP (Γ(W )) + ATE2
P , where the second summand does not depend

on the chosen estimator. Although any score function Γ̃(W ) satisfying EP [Γ̃(W ) |X] =

τ(X) can be used to form an estimate of V (π), the efficient score Γ(W ) has the lowest

variance, leading to the tightest bound. Despite the fact that semiparametric efficiency is an

asymptotic concept, the reduced variance of the welfare estimator leads to better theoretical

guarantees even in finite samples. We further discuss semiparametric efficiency in the context

of policy learning in Remark 2. In turn, the double-robustness of V̂ (π) ensures that it is first-

order asymptotically equivalent to the oracle welfare estimate, Ṽ (π) = n−1
󰁓n

i=1 π(Xi)Γ(Wi)

uniformly over π ∈ Π. As a result, expected regret of the AWM rule approaches zero at

the parametric rate n−1/2 under relatively weak consistency requirements on the first-stage

estimators. This fact allows to accommodate practical settings with rich covariates and

unknown propensity scores.

The minimum over k in (6) shows the adaptivity of the AWM rule: It optimally balances

the policy complexity,
󰁳

V C(Πk), and welfare loss, V (π∗
P )− V (π∗

k,P ). On the one hand, (6)

implies that

RP (π̂
AWM
n ) 󰃑 C

󰁶
EP [Γ(W )2]

nE

󰁴
min(V C(Πk) : π∗

P ∈ Πk) +

󰁶
KEP [Γ(W )2]

nH

+Rn,

yielding the same regret bound as if the decision-maker knew the complexity of the simplest

policy class Πk containing the optimal policy π∗
P . On the other hand, is possible that the

minimum in (6) is attained by the class k with 0 < V (π∗
P )−V (π∗

k,P ) = O(n−1/2), i.e., a simple

policy from a low complexity class is nearly optimal. In either case, the AWM rule optimally

resolves the bias-variance trade-off, relative to the class Π. Our Monte Carlo experiments,

presented in Section 4, suggest that this trade-off is very pronounced in practice, and the

AWM successfully adapts to the underlying optimal complexity.

The final leading term in (6) reflects the “price” of model selection and increases with the

number of classes. The seemingly restrictive dependence on K appears since our Assumption

2.2(1) only requires EP [Γ(W )2] < ∞, and can be drastically improved under further restric-

tions. In particular, the relevant rate would be K1/m if EP [Γ(W )m] < ∞, log(K) if Γ(W ) is

sub-exponential, and
󰁳

log(K) if Γ(W ) is sub-Gaussian.

Our second main result concerns rate-optimality. Let Pk = {P ∈ P : π∗
P ∈ Πk} denote a

class of distributions such that the optimal treatment rule within Π belongs to Πk. Note that

(Pk)k󰃑K form a partition of P. By Assumption 2.2 and the law of iterated expectations, we

can bound
󰁳

EP [Γ(W )2] 󰃑 B/η · L, where L =
󰁳

1 +B2
τη

2/B2. The bound in (6) provides

13



a guarantee on the worst-case performance of π̂AWM
n within Pk,

sup
P∈Pk

RP (π̂
AWM
n ) 󰃑 CL

B

η

󰁶
V C(Πk)

nE

+ L
B

η

󰁵
K

nH

+Rn. (7)

We show that no policy rule can do substantially better.

Theorem 2 (Regret Lower Bound). Let Assumptions 2.2 and 2.4 hold. Then, for any k,

inf
π̂n:Wn

1 →{0,1}
sup
P∈Pk

RP (π̂n) 󰃍 C
B

η

󰁵
V C(Πk)− 1

n
− 0.6B

n
, (8)

for all n 󰃍 max(5, η−1(V C(Πk)− 1)), where C 󰃍 0.16 is a universal constant.

The “worst-case” DGP-s, which attain the supremum in (8), are such that the individual

treatment effects Y (1) − Y (0) are highly variable, the covariate space X is rich, the distri-

bution of X has high entropy, and yet the CATE function τ(X) is of the magnitude n−1/2.

In such settings, it is statistically hard to distinguish between individuals that should and

should not be treated, so any policy learning rule is bound to make mistakes. Similar worst-

case DGP’s appear in the proofs of related results in Hirano and Porter (2009), Kitagawa

and Tetenov (2018) and Athey and Wager (2021).

3.3 Discussion

Taken together, Theorems 1 and 2 provide a strong theoretical justification for using the

AWM policy rule in practice, and refine the existing results in the literature. Specifically,

we show that, in contrast to the EWM rule of Kitagawa and Tetenov (2018) and the PWM

rule of Mbakop and Tabord-Meehan (2021), the AWM rule attains the optimal (parametric)

rate of convergence in settings with rich covariates and unknown propensity scores. Our

analysis does not require bounded outcomes and yields a sharper bound by leveraging a

semiparametrically efficient welfare estimator. While related rate results have been obtained

in Athey and Wager (2021) and Zhou, Athey, and Wager (2023), our approach additionally

establishes adaptivity, provides finite-sample (rather than asymptotic) guarantees, and avoids

restrictive tail assumptions. Moreover, we do not require uniform consistency of first-stage

estimators, a condition that may be overly restrictive in practice

Combining doubly robust welfare estimation with model selection requires technical ar-

guments that differ substantially from those in the existing literature. The paper closest

to ours is Fang, Xi, and Xie (2025). Relative to that work, we restrict attention to binary

policies but accommodate a richer set of environments, including endogenous treatment se-

lection (as in Example 2) and continuous treatments (as in Example 3). Our analysis does
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not require bounded outcomes or first-stage estimators and yields a sharp characterization

of the relevant universal constants. In particular, the constant C in Theorem 1 is smaller

than its counterparts in Theorem 2.1 of Kitagawa and Tetenov (2018) and Theorem 1 of

Athey and Wager (2021). We further provide a new finite-sample lower bound on expected

regret, establishing the minimax-rate optimality of the AWM rule. Unlike the lower bound

of Kitagawa and Tetenov (2018), our result allows for weak overlap — formally, sequences

of models Pn with ηn → 0 and distributions Pn ∈ Pn such that Pn(D = 1 | X = x) → 0 for

some x ∈ X — and, unlike Athey and Wager (2021), is non-asymptotic.

We conclude this section with two technical remarks. The first one discusses alterna-

tive measures of policy complexity, and the second one points out another connection with

semiparametric efficiency theory.

Remark 1 (Infinite VC Dimension and Multivalued Policy Rules). A version of Theorem 1

holds for many policy classes of infinite VC dimension. To elaborate, let N(ε,F , ||·||) denote
the covering number, i.e., minimum number of ||·||-balls of radius ε required to cover a set

F . Define the classes of functions Fk = {f(w) = π(x)Γ(w) : π ∈ Πk}, for each k = 1, . . . , K,

and suppose that

E(Πk) =

󰁝 ∞

0

sup
Q

󰁴
logN(u ||Γ||2,Q ,Fk, ||·||2,Q)du < ∞, (9)

where the supremum is taken over all finitely supported measuresQ, and ||f ||2,Q = (
󰁕
f 2dQ)1/2.

This quantity E(Πk) is known as the entropy integral and plays an important role in empirical

process theory (see Chapter 2 in van der Vaart and Wellner, 1996). For a version of Theorem

1 to hold, it suffices to require that E(Πk) < ∞, for all Πk. Specifically, as a simple corollary

of our proofs (starting from Equation (A.6) in the proof of Lemma A.7), under Assumptions

2.1–2.3 and the above condition, we obtain the same bound on expected regret as in (6)

with a smaller universal constant C = 4
√
12, and E(Πk) replacing V C(Πk). The entropy

formulation also allows to accommodate multivalued policy rules, as in Fang, Xi, and Xie

(2025), for which the VC dimension is not appropriate. 󰃈

Remark 2 (On Semiparametric Efficiency in Policy Learning). Intuitively, using efficient

estimator of the welfare function should be beneficial: if V̂ (π) is “close” to V (π), its maximizer

π̂ should come “close” to maximizing V (π). Although it is hard to study efficiency of π̂ itself

(it estimates an infinite dimensional parameter and, in many cases, has non-standard rates

of convergence), some general results can be obtained for the maximum welfare, V̂ (π̂). If the

policy class Π is unrestricted, the optimal treatment rule is πFB(x) = 1(τ(x) 󰃍 0), and the

maximum welfare is maxπ∈Π V (π) = E[max(τ(X), 0)]. Luedtke and Van Der Laan (2016)
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showed that if the optimal treatment rule is unique, i.e., P (τ(X) = 0) = 0, then maxπ∈Π V (π)

has a well-defined efficiency bound, and provided an estimator that attains it. Below, we

argue that similar results hold for restricted policy classes.

We only give a sketch of the argument below and defer the details to Lemma A.13 in the

Appendix. Suppose that the covariate space X is bounded, the model P satisfies Assumption

2.2 and all P ∈ P are dominated by a sigma-finite measure µ with bounded densities dP/dµ 󰃑
Cµ < ∞. Suppose that ψπ(W ) = π(X)Γ(W )−E[π(X)Γ(W )] is the efficient influence function

for V (π), and supπ∈Π |V̂ (π) − Ṽ (π)| = oP (n
−1/2), where Ṽ (π) = 1

n

󰁓n
i=1 π(Xi)Γ(Wi). Note

that the welfare function V : Π → R satisfies

|V (π)| 󰃑 ||Γ||2,P 󰃑 CΓ < ∞,

|V (π1)− V (π2)| 󰃑 ||Γ||2,P ||π1 − π2||2,P 󰃑 CΓCµ ||π1 − π2||2,µ ,

where CΓ =
󰁳

B2
τ +B2/η2 implied by Assumption 2.2–(1). Thus, V (·) can be viewed as an

element of the Banach space Cb(Π) of continuous bounded functions on Π endowed with a

sup-norm, ||V ||∞ = supπ∈Π |V (π)|.
The stated assumptions imply that V̂n(π) is semiparametrically efficient for V (π) for each

fixed π ∈ Π. Under further regularity conditions, using efficiency theory in Banach spaces

(e.g., Chapter 5 in Bickel, Klaassen, Ritov, and Wellner, 1993), one can show that V̂ (·) is

semiparametrically efficient for V (·) as an element of Cb(Π). In particular,

√
n(V̂n(·)− V (·)) →d G(·), in Cb(Π),

where G(·) is a centered Gaussian process with covariance kernel Cov(G(π1),G(π2)) =

E[ψπ1(W )ψπ2(W )], defining the efficiency bound for V (·). Now, consider a map ψ : C(Π) → R
defined as ψ(V ) = maxπ∈Π V (π). By, Proposition 4.12 in Bonnans and Shapiro (2013),

ψ(·) is Hadamard directionally differentiable at V in direction H with derivative ψ′
V (H) =

maxπ∈S∗(V ) H(π), where S∗(V ) = argmaxπ∈Π V (π). Thus, ψ(·) is fully Hadamard differen-

tiable if and only if S∗(V ) is a singleton. In the latter case, it follows from the Delta-method

that V̂ (π̂) = maxπ∈Π V̂n(π) is semiparametrically efficient for maxπ∈Π V (π). 󰃈

4 A Simulation Study

4.1 Design

In this section, we present a simulation study designed to illustrate the performance of

the proposed AWM procedure in practice. We consider a stylized data-generating process
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to illustrate the main insights of our results and allow for straightforward visualization.

Covariates X = (X1, X2, X3, X4) are drawn independently from Uniform [0, 1]. The potential

outcomes are defined as

Y (0) = 0.7(X3 +X4 + ε0);

Y (1) = CATE(X1, X2) + 0.7(X3 +X4 + ε1),

where ε0, ε1 ∼ N (0, 1) are independent Normal errors. We consider two CATE functions: the

first exhibits a positive effect when (X1, X2) lies within a rectangle (“Rectangle DGP”), and

the second when they fall within an ellipse (“Ellipse DGP”), highlighted in black in Figure

1a. In each case, the first-best policy assigns treatment to all units within the corresponding

region. The covariates X3 and X4 are irrelevant, but this fact is unknown to the algorithm.

The propensity score is given by

P (D = 1 | X) = Λ

󰀕
log(0.5) +

(X1 +X2 +X3 +X4)(log(2)− log(0.5))

4

󰀖
,

where Λ(·) denotes the logistic function. This specification ensures the propensity score lies

in the interval [1/3, 2/3].

4.2 The Importance of Choosing Policy Class

In practice, the DM does not know what policy class is most suitable for the underlying DGP.

The effects of choosing an incorrect policy class can be dramatic. To illustrate, we consider

two families of policies more or less suitable for each of the above DGPs.

The first family consists of discretized rules, where X1 and X2 are discretized into bins

to form a grid over the unit square. Each cell in the grid can be assigned to either treat

or not treat, with model complexity governed by the number of bins along each axis. The

rectangular region can be exactly recovered using discretized rules when the number of bins

along each axis is a multiple of five (since the decision boundaries lie at 1/5 and 4/5), while

approximating the elliptical region well requires a very large number of cells.

The second family of policies consists of linear threshold rules, in which covariates enter

polynomially and complexity is determined by the number of included terms. The elliptical

region can be exactly recovered by such a rule when second-order polynomial terms of X1

and X2 are included, while approximating the rectangular region well requires using very

high-degree polynomials.

For each DGP, we generate a dataset with a relatively small sample size of 200. We

estimate the outcome regressions using OLS and propensity score using logistic regression.
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(a) EWM policies closely approximate the first-best rule with appropriate complexity.

(b) EWM policies underfit due to insufficient complexity.

(c) EWM policies overfit due to excessive complexity.

Figure 1: The role of policy complexity
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For each family of policies, we fit EWM rules with different fixed complexities. Figure 1

presents the results. The first two columns feature discretized rules and the third one — linear

threshold rules. Panel (a) shows the optimal choice of complexity, Panel (b) — underfitting,

and Panel (c) — overfitting. It is visually clear that both under- and over-fitting may lead

to treatment rules that are drastically different from the optimal rule.

4.3 Adaptive Welfare Maximization

Next, we show that the AWM policy successfully adapts to the underlying unknown com-

plexity in each of the above DGPs. We generate 200 datasets for each sample size n ∈
{200, . . . , 1600} and compute the average regret for different procedures across these datasets.

We compare the AWM rule against several EWM rules with fixed complexity levels. We im-

plement AWM as described in Algorithm 3 in the Appendix, using 4-fold cross-validation

and 5-fold cross-fitting. We estimate the nuisance parameters using OLS for the outcome re-

gression models and logistic regression for the propensity score. To reduce the computational

complexity, here we focus on discretized rules.3

4.3.1 Rectangle DGP

The optimal policy complexity for the Rectangle DGP is five bins per axis: it recovers the

optimal treatment region while avoiding overfitting. Our theory suggests that as the sample

size increases, AWM should increasingly favor this level of complexity over the alternatives.

We let AWM rule select the number of bins per axis adaptively via cross-validation from the

range {3, 4, . . . , 10}. Figure 2 depicts the regret of AWM alongside EWM policies using 3, 5,

and 10 bins per axis. Figure 3 additionally shows the proportion of times each complexity

level is selected by AWM at each sample size.

The EWM rule with five bins per axis achieves the lowest regret, as it corresponds to

the correctly specified policy class. The AWM rule achieves regret that is very close, despite

not knowing the true complexity in advance. EWM with 3 or 10 bins performs worse, with

10 eventually outperforming 3 as the sample size increases and approximation error begins

to dominate estimation error. Consistent with our theoretical results, the AWM rule selects

mostly 5 and 4 bins at smaller sample sizes and increasingly favors 5 as the sample size grows.

3Computing the EWM discretized rule amounts to computing the CATE functions cell by cell, which
is computationally straightforward. Computing the optimal linear threshold rules requires solving a Mixed
Integer Linear Program; see Mbakop and Tabord-Meehan (2021).
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Figure 2: Average regret for the AWM and fixed-complexity EWM rules for the Rectangle
DGP.

Figure 3: Share of complexity levels (number of bins per axis) selected by the AWM rule at
each sample size for the Rectangle DGP.
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4.3.2 Ellipse DGP

For the Ellipse DGP, the first-best policy cannot be exactly recovered by any discretized rule.

As the sample size increases, we expect higher-complexity classes to perform better, since

they can better approximate the curved decision boundary. Ideally, the AWM rule should

also shift toward selecting more complex policies as the sample size grows. In this simulation,

we let AWM select the number of bins per axis from 5 to 15. We plot the regret of EWM

policies with fixed discretizations at 5, 10, and 15 bins, along with the regret of AWM, in

Figure 4. Additionally, Figure 5 shows the share of complexity levels chosen by AWM across

different sample sizes.

From Figure 5, we clearly see that as the sample size increases, AWM begins to favor

higher-complexity classes. As a result, AWM maintains relatively low regret across all sample

sizes, as shown in Figure 4. Among the fixed-complexity EWM policies, using 5 bins performs

best at smaller sample sizes, while 10 bins becomes optimal as the sample size grows. The

15-bin model consistently overfits and performs worse. AWM initially favors 5 and 6 bins,

and gradually shifts toward selecting 10 and 11 bins as more data become available.

In conclusion, these simulation results illustrate the ideal behavior of adaptively selecting

policy complexity using cross-validation. When the optimal policy lies within the policy class,

AWM eventually identifies the correct level of complexity and achieves regret close to the

first-best. In settings where the optimal policy cannot be exactly represented, AWM adapts

to the sample size and favors increasingly rich models as sample size increases, effectively

balancing estimation and approximation error.

5 Conclusion

This paper proposed a policy learning algorithm called Adaptive Welfare Maximization. It

is based a doubly-robust, semiparametrically efficient estimate of the welfare function, which

allows to accommodate settings with rich covariates, where estimating the nuisance func-

tions reliably requires using machine learning methods. Moreover, it automatically adapts to

the unknown optimal policy complexity for a given DGP. Our proof strategy can be readily

adopted and extended to settings with multivalued treatments or non-linear regret functions.

We leave such extensions for future work. From a practical perspective, an important direc-

tion for future work is developing computational tools to scale the approach proposed here

and in related work to large datasets.
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Figure 4: Average regret for AWM and fixed-complexity EWM rules for the Ellipse DGP.

Figure 5: Share of complexity levels (number of bins per axis) selected by AWM at each
sample size for the Ellipse DGP.
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A Appendix

A.1 CV algorithm

Algorithm 3 (Cross-Validation for Policy Complexity).

Input: Data sample (Wi)
n
i=1; Policy classes Πk for k ∈ {1, . . . , K}.

Output: Data-driven complexity choice k̂.

1. Randomly split the sample (Wi)
n
i=1 into L samples, denoted S1, . . . , SL. For each l ∈

{1, . . . , L}, let the superscripts (l) and (−l) indicate that the corresponding object was

computed using only Sl, or only S−l = ∪j ∕=lSj, correspondingly.

2. For each policy class Πk:

(i) For each l ∈ {1, . . . , L}, compute the EWM policy:

π̂
(−l)
k = argmax

π∈Πk

V̂ (−l)(π),

where V̂ (−l)(π) is constructed as in Algorithm 1, and evaluate its performance out

of sample:

Q̂(π̂
(−l)
k ) =

1

|Sl|
󰁛

i∈Sl

π̂
(−l)
k (Xi)Γ̂

(−l)(Wi).

Note: Computing Γ̂(−l) does not require cross-fitting, i.e., the first-stage estima-

tors m̂(−l)(x, d), τ
(−l)
m̂ (x, d), and ĝ(−l)(x, z) may be computed using the entire (−l)

sample.

(ii) Compute the cross-validation criterion

Q̂k =
1

L

L󰁛

l=1

Q̂(π̂
(−l)
k ).

3. Choose k̂ = argmaxk∈{1,...,K} Q̂k. 󰃈

A.2 Known Results and Some Refinements

To keep the notation simple, we state all results for regular rather than outer expectations,

but take into account the potential difference between the two throughout the proofs. For the

symmetrization lemma below, the structure of the underlying probability space is important.

For the detailed discussion, see Sections 2.1–2.3 in van der Vaart and Wellner (1996).
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First, we state a well-known symmetrization inequality; see, e.g., Lemma 2.3.1. in van der

Vaart and Wellner (1996), for reference.

Lemma A.1 (Symmetrization). Let W1, . . . ,Wn be an i.i.d. sample and F a class of mea-

surable functions f : W 󰀁→ R such that E[f(Wi)] < ∞ for all f ∈ F . Then,

E

󰀥
sup
f∈F

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

f(Wi)− E[f(Wi)]

󰀏󰀏󰀏󰀏󰀏

󰀦
󰃑 2 · E

󰀥
sup
f∈F

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

ξif(Wi)

󰀏󰀏󰀏󰀏󰀏

󰀦
,

where ξ1, . . . , ξn are i.i.d. Rademacher random variables independent of W1, . . . ,Wn.

Next, we state a useful maximal inequality for Orlicz norms. Let ψ be a strictly increasing,

convex function satisfying ψ(0) = 0, and X be a random variable. The Orlisz norm ||X||ψ is

defined as

||X||ψ = inf

󰀝
C > 0 : E

󰀕
ψ

󰀕
|X|
C

󰀖󰀖
󰃑 1

󰀞
.

The following result is Exercise 2.2.8 in van der Vaart and Wellner (1996).

Lemma A.2 (Maximal Inequality with Orlisz Norms). For any random variables X1, . . . , Xm

and any strictly increasing, convex function ψ,

E
󰀗
max
j󰃑m

|Xj|
󰀘
󰃑 ψ−1(m)max

j󰃑m
||Xj||ψ

Proof. For any C > 0,

ψ
󰀓
E
󰁫
maxj󰃑m

|Xj |
C

󰁬󰀔
󰃑 E

󰁫
maxj󰃑m ψ

󰀓
|Xj |
C

󰀔󰁬

󰃑 mmax
j󰃑m

E
󰁫
ψ
󰀓

|Xj |
C

󰀔󰁬
,

where the first inequality holds because ψ is convex and non-decreasing. Therefore, for any

C such that maxj󰃑m E [ψ (|Xj|/C)] 󰃑 1, we have

E
󰀗
max
j󰃑m

|Xj|
󰀘
󰃑 Cψ−1(m).

Choosing C = maxj󰃑m ||Xj||ψ concludes the proof. 󰃈

Next, we pin down the universal constant in Theorem 2.6.4. from van der Vaart and

Wellner (1996).
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Lemma A.3 (Covering Numbers for VC classes). For any VC-class C of sets, any probability

measure Q, any r 󰃍 1, and 0 < ε < 1,

N(ε, C, Lr(Q)) 󰃑 1

2
√
e
V (C)(4e)V (C)

󰀕
1

ε

󰀖r(V (C)−1)

.

Proof. We closely follow the proof of Theorem 2.6.4. in van der Vaart and Wellner (1996). We

start by referencing the main steps and introducing the necessary notation. First, note that

||1C − 1D||Q,r = Q1/r(C△D), so an εr-cover under L1(Q) produces an ε-cover under Lr(Q).

Therefore, the result for r > 1 follows immediately from the result for r = 1. Second, one

can argue that it suffices to consider empirical type measures Q supported on a large enough

finite set of distinct points {x1, . . . , xn}. Third, it is more convenient to bound the packing

number D(ε, C, L1(Q)) first and use the fact that N(ε, C, L1)(Q)) 󰃑 D(ε/2, C, L1(Q)).

Each set C ∈ C can be identified with a binary vector 1C = (1(xi ∈ C))ni=1, and the

collection C can be identified with a binary matrix Z of size n × #Z. Define d(1C1 ,1C2) =

n−1
󰁓n

i=1 |1C1 −1C2 |. Then, recalling that Q places probability 1/n on each xi, Q(C1△C2) =

d(1C1 ,1C2), so that D(ε, C, L1(Q)) = D(ε,Z, d). For simplicity of notation, assume that Z
is ε-separated with respect to d, so the goal is to bound its size #Z in terms of the VC

dimension V (C).
Denote S = V (C) − 1 and fix an integer m such that S 󰃑 m < n. For a subset J ⊂

{1, . . . , n} of size #J = m, let ZJ denote the projection of Z onto {0, 1}J , and #ZJ denote

the average size of ZJ over all subsets J or size m. Then, following the proof on Page 138 of

van der Vaart and Wellner (1996), we arrive to the bound

#Z 󰃑 #ZJnε(m+ 1)

εn(m+ 1)− 2(n−m)S
󰃑 ε(m+ 1)#ZJ

ε(m+ 1)− 2S
󰃑 εm#ZJ

εm− 2S
,

which holds without any extra constants. The number of points in any ZJ is equal to the

number of subsets picked out by C from the points {xi : i ∈ J}. By the Sauer-Shelah Lemma,

this is bounded by
󰁓S

j=0

󰀃
m
j

󰀄
, which is smaller than (em/S)S for m 󰃍 S.4 Therefore,

#Z 󰃑
󰀓 e

S

󰀔S mS+1ε

mε− 2S

holds for all integers m such that S 󰃑 m < n. Denote the right-hand side of the preceding

display by f(m). This function is strictly decreasing until m∗ = 2(S + 1)/ε and strictly

increasing afterwards. Therefore, the optimal unconstrained choice is m = m∗, for which

f(m∗) = (2e/ε)S(S + 1)(1 + S−1)S. However, the argument leading to the upper bound on

4Indeed, for t ∈ (0, 1),
󰁓S

j=0

󰀃
m
j

󰀄
󰃑

󰁓S
j=0

󰀃
m
j

󰀄
tj

tS
󰃑 (1+t)m

tS
. Set t = S

m and use (1 + S/m)m 󰃑 eS .
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#Z only applies to integer m such that S 󰃑 m < n, while m∗ may not be integer. To ensure

that a similar bound holds for an integer value of m, we can simply use f(m∗ − 1) since

somewhere between m∗ − 1 and m∗ there must be an integer, and f(m) is decreasing on this

interval. We have

f(m∗ − 1) =
󰀃
e
S

󰀄S (2(S + 1)/ε− 1)S+1ε

(2(S + 1)/ε− 1)ε− 2S

=
󰀃
2e
ε

󰀄S 1
1−ε/2

(S + 1− ε/2)
󰀓
1 + 1−ε/2

S

󰀔S

󰃑
󰀃
2e
ε

󰀄S
(S + 1) 1

1−ε/2
exp(1− ε/2)

󰃑
󰀃
2e
ε

󰀄S
(S + 1) · 2

√
e,

for all ε ∈ (0, 1) since the function g(ε) = (1−ε/2)−1 exp(1−ε/2) is monotonically increasing.

Therefore, we obtain the bound

#Z 󰃑
󰀕
2e

ε

󰀖S

(S + 1) · 2
√
e,

and it remains to check that this bound still holds when m∗ − 1 < S or m∗ 󰃍 n. Note that

m∗ − 1 󰃍 S for all ε ∈ (0, 1). If m∗ 󰃍 n, by the Sauer-Shelah Lemma

#Z 󰃑
S󰁛

j=0

󰀕
n

j

󰀖
󰃑

󰀓en
S

󰀔S

󰃑
󰀕
em∗

S

󰀖S

󰃑 e

󰀕
2e

ε

󰀖S

,

which certainly implies the bound in the previous display. Therefore, recalling that #Z =

D(ε, C, L1(Q)),

N(ε, C, L1(Q)) 󰃑 D(ε/2, C, L1(Q))

󰃑
󰀃
4e
ε

󰀄S
(S + 1) · 2

√
e

=
󰀃
4e
ε

󰀄V (C)−1
V (C) · 2

√
e

= 1
2
√
e
V (C)(4e)V (C) 󰀃1

ε

󰀄(V (C)−1)
,

and the desired result follows. 󰃈

Next, we state three lemmas about specific VC-subgraph classes of functions. A subgraph

of a function f : X → R is defined as

Cf = {(t, x) ∈ R× X : t < f(x)}.
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A class of functions F is VC-subgraph if the class of all subgraphs

CF = {Cf : f ∈ F}

has a finite VC dimension. In this case we denote V (F) = V (CF).
The first result is Theorem 2.6.7. from van der Vaart and Wellner (1996). It is a direct

corollary of the result for sets (our Lemma A.3) and holds with the same universal constant.

Lemma A.4 (Covering Number for VC-subgraph Classes). For a VC-class of functions with

a measurable envelope function F and r 󰃍 1, for any probability measure Q with ||F ||Q,r > 0,

N(ε ||F ||Q,r ,F , Lr(Q)) 󰃑 1

2
√
e
V (F)(16e)V (F)

󰀕
1

ε

󰀖r(V (F)−1)

,

for 0 < ε < 1.

For a particular VC-subgraph class of functions, the bound in Lemma A.4 can be im-

proved.

Lemma A.5 (A Simple VC-Subgraph Class). Let G denote a class of subsets of X with

a finite VC dimension V (G), and F : X → R be an arbitrary function. Define a class of

functions:

F = {1(x ∈ G)F (x) : G ∈ G}.

Then, F is VC-subgraph with V (F) 󰃑 V (G).

Proof. Let V C(G) = d and D = {(t1, x1), . . . , (td, xd+1)} ⊂ R × X be an arbitrary set of

points. By definition, D is shattered by F if for every subset {(tj, xj) : j ∈ J} there is a

function f with subgraph Cf such that Cf ∩ D = {(tj, xj) : j ∈ J}. Equivalently, D is

shattered by F if for every subset J ⊂ {1, . . . , d+ 1} there is a set G ∈ G satisfying

tj < 1(xj ∈ G)F (xj) for j ∈ J

tk 󰃍 1(xk ∈ G)F (xk) for k /∈ J
(A.1)

We will argue that D cannot be shattered by F .

First, if there is (tj, xj) such that tj < 0 and tj < F (xj), then tj < 1(xj ∈ G)F (xj) holds

for all G ∈ G. In this case, any subset of D that does not include tj, xj cannot be picked out,

so D cannot be shattered by F . Similarly, if there is (tk, xk) such that tk 󰃍 0 and tk 󰃍 F (xk),

then tk 󰃍 1(xk ∈ G)F (xk) holds for all G ∈ G. So, any subset of D that includes this point

cannot be picked out, and D cannot be shattered by F . Therefore, we will assume that each

(tj, xj) satisfies either tj < 0, F (xj) 󰃍 0 or tj 󰃍 0, F (xj) < 0 for j = 1, . . . , d+ 1.
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By assumption, G does not shatter {x1, . . . , xd+1}, meaning that there exist a subset

{xj}j∈J that G cannot pick out. Then, for every G ∈ G we have either xj /∈ G for some j ∈ J

or xk ∈ G for some k /∈ J . If the inequalities in (A.1) do not hold for this J for any G, then

{(tj, xj)}j∈J cannot be picked out and D cannot be shattered by F . Suppose the inequalities

in (A.1) hold for some G ∈ G. If xj /∈ G for some j ∈ J , it must be that tj < 0 and, according

to the previous discussion, F (xj) 󰃍 0. Then the set J ′ = J\(tj, xj) cannot be picked out. If

xk ∈ G for some k /∈ J , it must be that tk 󰃍 0 and F (xk) < 0, so the set J ′′ = J ∪ k cannot

be picked out. Therefore, D cannot be shattered by F , so V C(F) 󰃑 V C(G). 󰃈

Lemma A.6 (Covering Numbers for Special VC-Subgraph Classes). Let F be the class of

functions defined in Lemma A.5. For any r 󰃍 1, probability measure Q with ||F ||Q,r > 0,

and 0 < ε < 1,

N(ε ||F ||Q,r ,F , Lr(Q)) 󰃑 1

2
√
e
V (F)(4e)V (F)

󰀕
1

ε

󰀖r(V (F)−1)

.

Proof. By Lemma A.5, F is VC-subgraph. For r = 1, note that

||f1 − f2||Q,1 = EQ[|1G1 − 1G2 ||F |] = P (Cf1△Cf2) ||F ||Q,1 ,

where P = λ × Q/ ||F ||Q,1 is a probability measure on R × X and λ is a Lebesgue measure

on R. Then, by Lemma A.3,

N(ε ||F ||Q,1 ,F , L1(Q)) = N(ε, CF , L1(P )) 󰃑 1

2
√
e
V (F)(4e)V (F)

󰀕
1

ε

󰀖(V (F)−1)

.

For r > 1, note that

||f1 − f2||rQ,r = EQ(|1G1F − 1G2F ||F |r−1) =
||f1 − f2||R,1

||F ||R,1

EQ(|F |r),

for the probability measure R with density |F |r−1/EQ(|F |r−1) with respect to Q. Therefore,

||f1 − f2||Q,r =

󰀣
||f1 − f2||R,1

||F ||R,1

󰀤1/r

||F ||Q,r ,

so that by the previous argument applied to R instead of Q

N(ε ||F ||Q,r ,F , Lr(Q)) 󰃑 N(εr ||F ||R,1 ,F , L1(R)) 󰃑 1

2
√
e
V (F)(4e)V (F)

󰀕
1

ε

󰀖r(V (F)−1)

,
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which completes the proof. 󰃈

The last lemma is a version of the classical maximal inequality for Rademacher complexity

of functional classes with finite VC-dimension with a pinned down universal constant.

Lemma A.7 (Finite-Sample Bound on Rademacher Complexity). Let W1, . . . ,Wn be an i.i.d.

sample and ξ1, . . . , ξn be i.i.d. Rademacher random variables independent of W1, . . . ,Wn.

1. Let F be a VC-subgraph of functions with f0(w) = 0 ∈ F , a finite VC dimension

V C(F), and a measurable envelope F such that S = E[F 2] < ∞. Then:

E

󰀥
sup
f∈F

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

ξif(Wi)

󰀏󰀏󰀏󰀏󰀏

󰀦
󰃑 C

󰁵
V C(F)S

n
,

where C = 4
√
12

󰁕 1

0

󰁳
1/(2e3/2) + log(16e) + 2 log(1/u)du 󰃑 34.

2. In the special case when F = {f(x) = 1(x ∈ G)F (x) : G ∈ G}, for a VC-class of sets

G and an arbitrary measurable function F with S = E[F 2] < ∞, the above holds with

C = 4
√
12

󰁕 1

0

󰁳
1/(2e3/2) + log(4e) + 2 log(1/u)du 󰃑 29.

Proof. Denote G0
n(f) = n−1/2

󰁓n
i=1 ξif(Wi). By the Law of Iterated Expectations,

E
󰀗
sup
f∈F

󰀏󰀏󰀏󰀏
1√
n
G0(f)

󰀏󰀏󰀏󰀏

󰀘
=

1√
n
EWn

1

󰀗
Eξn1

󰀗
sup
f∈F

󰀏󰀏G0(f)
󰀏󰀏
󰀘󰀘

(A.2)

We will use a chaining argument to bound the right hand side of (A.2). Let η = 2 ||F ||2,n,
and define F0 = {f0} and Fj contain centers of the balls in the minimal η2−j-cover of F
under ||·||2,n, so that |Fj| = N(η2−j,F , ||·||2,n). Let φj : F → Fj be a map that for a given

f finds the closest element of Fj. For any fk ∈ Fk define a chain fk−l = φk−l(fk−l+1) for

l = 1, . . . , k. Then,

G0
n(fk) =

k󰁛

j=1

(G0
n(fj)−G0

n(fj−1)) 󰃑
k󰁛

j=1

max
g∈Fj

|G0
n(g)−G0

n(φj−1(g))|, (A.3)

Let ψ2(x) = ex
2 − 1 and ||·||ψ2

denote the corresponding Orlisz norm. By Lemma 2.2.7.

in van der Vaart and Wellner (1996), the process G0
n(f) is sub-Gaussian for the metric

dn(f1, f2) = ||f1 − f2||2,n, and satisfies ||G0
n(f)−G0

n(g)||ψ2
󰃑

√
6 ||f − g||2,n, conditional on

W n
1 . By Lemma A.2, the preceding sentence, and the fact that ||g − φj−1(g)||2,n 󰃑 η2−(j−1),

Eξn1

󰀗
max
g∈Fj

|G0
n(g)−G0

n(φj−1(g))|
󰀘

󰃑 ψ−1
2 (|Fj|)maxg∈Fj

||G0
n(g)−G0

n(φj−1(g))||ψ2

󰃑
√
6 · ψ−1

2 (N(η2−j,F , ||·||2,n)) · η2−(j−1).

(A.4)
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Therefore,

Eξn1

󰀗
sup
f∈Fk

|G0
n(f)|

󰀘
󰃑

√
6

k󰁛

j=1

ψ−1
2 (N(η2−j,F , ||·||2,n))η2

−(j−1)

(a)

󰃑 4
√
6

󰁝 η/2

0

ψ−1
2 (N(ε,F , ||·||2,n))dε

= 4
√
6

󰁝 ||F ||2,n

0

󰁴
log(N(ε,F , ||·||2,n) + 1)dε

(b)

󰃑 4
√
12

󰁝 ||F ||2,n

0

󰁴
logN(ε,F , ||·||2,n)dε,

where (a) follows from counting the rectangles under the curve ε 󰀁→ ψ−1
2 (N(ε,F , ||·||2,n)),

and (b) follows from log(x + 1) 󰃑 2 log(x) for x 󰃍 2. Conditional on W n
1 , the process G0

n is

separable, so by letting k → ∞ in the previous display we conclude that

Eξn1

󰀗
sup
f∈F

|G0
n(f)|

󰀘
󰃑 4

√
12

󰁝 ||F ||2,n

0

󰁴
logN(ε,F , ||·||2,n)dε. (A.5)

Denote V ≡ V C(F) and L = (2
√
e)−1. With a change of variables u = ε/ ||F ||2,n,

󰁝 ||F ||2,n

0

󰁴
logN(ε,F , ||·||2,n)dε = ||F ||2,n

1󰁝

0

󰁴
logN(u ||F ||2,n ,F , ||·||2,n)du. (A.6)

Applying Lemma A.4 (or Lemma A.6 for the special case) with r = 2 and Q = Pn,

logN(u ||F ||2,n ,F , ||·||2,n) 󰃑 log(LV ) + V log(16e) + 2(V − 1) log
󰀃
1
u

󰀄

= V
󰀓
L log(LV )

LV
+ log(16e) + 2V−1

V
log

󰀃
1
u

󰀄󰀔

󰃑 V
󰀃
L/e+ log(16e) + 2 log

󰀃
1
u

󰀄󰀄
,

where the last line uses the fact that log(t)/t 󰃑 1/e for all t > 0. Therefore,

||F ||2,n󰁝

0

󰁴
logN(ε,F , ||·||2,n)dε 󰃑

1󰁝

0

󰁳
L/e+ log(16e) + 2 log (1/u)du ·

󰁴
V ||F ||22,n (A.7)
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Combining (A.5) and (A.7), we obtain

Eξn1

󰀗
sup
f∈F

|G0
n(f)|

󰀘
󰃑 C

󰁴
V ||F ||22,n

where C = 4
√
12

󰁕 1

0

󰁳√
e/2 + log(16e) + 2 log(1/u)du (or the same expression with 4e in-

stead of 16e in the special case). By (A.2) and Jensen’s inequality,

E

󰀥
sup
f∈F

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

i=1

ξif(Wi)

󰀏󰀏󰀏󰀏󰀏

󰀦
󰃑 C

󰁵
V C(F)S

n
,

which concludes the proof.

󰃈

A.3 Proofs of Theorems 1 and 2

We break the proof of Theorem 1 into a sequence of lemmas. The first lemma establishes

an upper bound on expected regret for the oracle EWM rule, assuming full knowledge of the

nuisance functions in Γ(W ). It is a version of Theorem 1 in Kitagawa and Tetenov (2018)

with a precisely pinned down constant.

Lemma A.8 (Regret Bound for Oracle EWM). Let Assumptions 2.1 and 2.2 hold, Π have

a finite VC-dimension, and Ṽn(π) =
1
n

󰁓n
i=1 π(Xi)Γ(Wi). Consider the oracle EWM policy

rule

π̃EWM
n ∈ argmax

π∈Π
Ṽn(π).

Then, for any P ∈ P,

RP (π̃
EWM
n ) 󰃑 C ·

󰁳
EP [Γ(W )2] ·

󰁵
V C(Π)

n
,

for a universal constant C 󰃑 58.

Proof. Since π̃EWM
n maximizes Ṽn(π),

V (π∗)− V (π̃EWM
n ) = V (π∗)− Ṽn(π̃

EWM
n ) + Ṽn(π̃

EWM
n )− V (π̃EWM

n )

󰃑 V (π∗)− Ṽn(π
∗) + supπ∈Π |Ṽn(π)− V (π)|.

Thus, since E[Ṽn(π
∗)] = V (π∗),

RP (π̃
EWM
n ) 󰃑 EP

󰀗
sup
π∈Π

|Ṽn(π)− V (π)

󰀘
.
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Applying Lemma A.1 to the class F = {π(x)Γ(w) : π ∈ Π}, which has an integrable envelope

|Γ(w)|, and then applying part 2 of Lemma A.7 implies the stated result. 󰃈

The second Lemma establishes that the doubly-robust and oracle welfare estimates are

close to each other uniformly in π ∈ Π. It is a non-asymptotic version of Lemma 4 from

Athey and Wager (2021), which we prove under weaker assumptions.

Lemma A.9 (Uniform Coupling). Let assumptions 2.1, 2.2, and 2.3 hold, and Π have finite

VC-dimension. Let V̂n(π) be computed as in Algorithm 1 (denoting the sample size by n, for

simplicity) and Ṽn(π) =
1
n

󰁓n
i=1 π(Xi)Γ(Wi). Then,

E
󰀗
sup
π∈Π

|V̂n(π)− Ṽn(π)|
󰀘
󰃑 R1,n +R2,n +R3,n,

where

R1,n = C

󰁵
J · B2 · V C(Π)a((1− J−1)n)

n1+ζg
,

R2,n = C

󰁶

J · 2(η
2 + 1)

η2
· V C(Π)a((1− J−1)n)

n1+ζm
,

R3,n =

󰁵
a((1− J−1)n)2

nζm+ζg
,

and C 󰃑 58 is a universal constant.

Proof. Denote the indices of the observations included in j-th fold by Ij, and recall that m̂(−j),

τm̂(−j) and ĝ(−j) denote the first-stage estimators computed using all observations excluding

the j-th fold. For i ∈ Ij, denote Γ̂i ≡ Γ̂(−j)(Wi), Γi = Γ(Wi), and write the difference Γ̂i −Γi

as a sum of three terms

Γ̂i − Γi = (Yi −m(Xi, Di))(ĝ
(−j)(Xi, Zi)− g(Xi, Zi))

+ τm̂(−j)(Xi, Di)− τm(Xi, Di)− g(Xi, Zi)(m̂
(−j)(Xi, Di)−m(Xi, Di))

− (ĝ(−j)(Xi, Zi)− g(Xi, Zi))(m̂
(−j)(Xi, Di)−m(Xi, Di)).

Denote the corresponding summands in V̂n(π) − Ṽn(π) by S1(π), S2(π), and S3(π). We will

bound each term separately.

First Term. Write S1(π) =
󰁓J

j=1 S
(j)
1 (π), where n

nj
S
(j)
1 (π) is equal to

1

nj

󰁛

i∈Ij

π(Xi)(Yi −m(Xi, Di))(ĝ
(−j)(Xi, Zi)− g(Xi, Zi)).
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By the law of iterated expectations, (recalling that Z ⊥ (Y (0), Y (1), D(0), D(1)) |X)

E[π(Xi)(Yi −m(Xi, Di))(ĝ
(−j)(Xi, Zi)− g(Xi, Zi)) | ĝ(−j)] = 0.

Denote

V1,n(j) = E
󰀅
π(Xi) · E[(Yi −m(Xi, Di))

2|Xi, Di] · (ĝ(−j)(Xi, Zi)− g(Xi, Zi))
2 | ĝ(−j)

󰀆
.

Applying, conditional on ĝ(−j), Lemma A.8 with (Yi −m(Xi, Di)) · (ĝ(−j)(Xi, Zi)− g(Xi, Zi))

in place of Γi, we obtain

n

nj

EP

󰀗
sup
π∈Π

|S(j)
1 (π)|

󰀏󰀏󰀏󰀏 ĝ
(−j)

󰀘
󰃑 C

󰁶
V C(Π)V1,n(j)

nj

.

By Assumption 2.3, π(Xi) 󰃑 1, and the law of total variance,

EP [V1,n(j)] 󰃑 B2a((1− J−1)n)

nζg
.

Using the last two displays, the law of iterated expectations, and Jensen’s inequality, for each

j ∈ {1, . . . , J}, we obtain

E
󰀗
sup
π∈Π

|S(j)
1 (π)|

󰀘
󰃑 C

󰁵
nj

n

󰁵
B2

V C(Π)a((1− J−1)n)

n1+ζg
.

Since supremum is sub-additive, using the inequality
󰁓J

j=1

󰁳
nj/n 󰃑

√
J , and summing over

j, we obtain

E
󰀗
sup
π∈Π

|S1(π)|
󰀘
󰃑 C

󰁵
J · B2 · V C(Π)a((1− J−1)n)

n1+ζg
.

Second Term. As above, write S2(π) =
󰁓J

j=1 S
(j)
2 (π), where n

nj
S
(j)
2 (π) is equal to

1

nj

󰁛

i∈Ij

π(Xi)(τm̂(−j)(Xi, Di)− τm(Xi, Di)− g(Xi, Zi)(m̂
(−j)(Xi, Di)−m(Xi, Di)))

Denote the individual summands in the previous display by f(Wi; π). By Assumption 2.1

and the law of iterated expectations,

EP [f(Wi; π) | m̂(−j), τm̂(−j) ] = 0.
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Denote V2,n(j) = EP [f(Wi; π)
2 | m̂(−j), τm̂(−j) ]. Applying, conditional on m̂(−j) and τm̂(−j) ,

Lemma A.8 with (τm̂(−j)(Xi, Di)−τm(Xi, Di)−g(Xi, Zi)(m̂
(−j)(Xi, Di)−m(Xi, Di))) in place

of Γi, we obtain

n

nj

E
󰀗
sup
π∈Π

|S(j)
2 (π)|

󰀏󰀏󰀏󰀏 ĝ
(−j)

󰀘
󰃑 C

󰁶
V C(Π)V2,n(j)

nj

Using π(Xi) 󰃑 1, (a+ b)2 󰃑 2(a2 + b2), and Assumptions 2.1, 2.2, and 2.3, we obtain

EP [V2,n(j)] 󰃑 2

󰀕
a((1− J−1)n)

nζm
+

1

η2
a((1− J−1)n)

nζm

󰀖
=

2(η2 + 1)

η2
a((1− J−1)n)

nζm
.

By the last two displays, the law of iterated expectation, and Jensen’s inequality,

E
󰀗
sup
π∈Π

|S(j)
2 (π)|

󰀘
󰃑 C

󰁵
nj

n

󰁶
2(η2 + 1)

η2
V C(Π)a((1− J−1)n)

n1+ζm

Since supremum is sub-additive, summing up across j, using the fact that
󰁓J

j=1

󰁳
nj/n 󰃑

√
J ,

E
󰀗
sup
π∈Π

|S2(π)|
󰀘
󰃑 C

󰁶

J · 2(η
2 + 1)

η2
· V C(Π)a((1− J−1)n)

n1+ζm

Third Term. Let j(i) denote the fold in which observation i belongs. We have:

S3(π) = − 1

n

n󰁛

i=1

π(Xi)(ĝ
(−j(i))(Xi, Zi)− g(Xi, Zi))(m̂

(−j(i))(Xi, Di)−m(Xi, Di))

By Cauchy-Schwartz inequality (in Rn) and π(Xi) 󰃑 1,

supπ∈Π |S3(π)| 󰃑
󰁴

1
n

󰁓n
i=1(ĝ

(−j(i))(Xi, Zi)− g(Xi, Zi))2

×
󰁴

1
n

󰁓n
i=1(m̂

(−j(i))(Xi, Di)−m(Xi, Di))2.

Taking expectations on both sides, using Cauchy-Schwartz inequality, and recalling Assump-

tion 2.3, we obtain

E
󰀗
sup
π∈Π

|S3(π)|
󰀘
󰃑

󰁵
a((1− J−1)n)2

nζm+ζg
,

and the proof is complete. 󰃈

The third lemma is a finite-sample version of Theorem 1 from Athey and Wager (2021),

which we prove under weaker assumptions.
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Lemma A.10 (EWM with Doubly-Robust Welfare Estimates). Let Assumptions 2.1, 2.2

and 2.3 hold, and Π have finite VC-dimension. Let V̂n(π) be computed as in Algorithm 1,

and

π̂n ∈ argmax
π∈Π

V̂n(π).

Then,

RP (π̂n) 󰃑 C ·
󰁳

EP [Γ(W )2] ·
󰁵

V C(Π)

n
+ 2Rn,

for a universal constant C 󰃑 58 and Rn = o(n−1/2) as defined in Lemma A.9.

Proof. Recall that Ṽn(π) =
1
n

󰁓n
i=1 π(Xi)Γ(Wi). Note that

V (π∗)− V (π̂n) = V (π∗)− V̂n(π̂n) + V̂n(π̂n)− V (π̂n)

󰃑 V (π∗)− V̂n(π
∗) + Ṽn(π̂n)− V (π̂n) + supπ∈Π |V̂n(π)− Ṽn(π)|

󰃑 {V (π∗)− Ṽn(π
∗)}+ supπ∈Π |Ṽn(π)− V (π))|+ 2 supπ∈Π |V̂n(π)− Ṽn(π)|.

Taking expectations and applying Lemmas A.8 and A.9, we obtain

RP (π̂n) 󰃑 C
󰁳

EP [Γ(W )2]

󰁵
V C(Π)

n
+ 2Rn,

where Rn = o(n−1/2) defined precisely in Lemma A.9. 󰃈

The fourth lemma establishes an upper bound on expected regret for the “oracle AWM”

rule computed assuming full knowledge of the nuisance functions in Γ(W ).

Lemma A.11 (Adaptation for Oracle AWM). Let Assumptions 2.1, 2.2, and 2.4 hold, and

π̃AWM
n be defined as in Algorithm 2 but with Ṽn(π) =

1
n

󰁓n
i=1 π(Xi)Γ(Wi) instead of V̂n(π).

For P ∈ P, let π∗
P ∈ argmaxΠ V (π) and Pk = {P ∈ P : π∗

P ∈ Πk}. Then, for any P ∈ Pk

RP (π̃
AWM
n ) 󰃑 min

k󰃑K

󰀕
C

󰁶
EP [Γ(W )2]

nE

󰁳
V C(Πk) + V (π∗

P )− V (π∗
k,P )

󰀖
+

󰁶
KEP [Γ(W )2]

nH

,

where C 󰃑 58 is a universal constant.

Proof. To simplify notation, we suppress the dependence of population quantities on P . To

distinguish between the oracle and feasible estimators, we use the notation Ã instead of Â

for all in-sample quantities. Further, we denote π∗
k ∈ argmaxπ∈Πk

V (π), and

Ṽ (H)(π) =
1

nH

󰁛

i∈H

π(Xi)Γ(Wi).
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For any k 󰃑 K, we can expand

V (π∗)− V (π̃AWM
n ) = V (π∗)− V (π∗

k)

+ V (π∗
k)− Q̃k̃

+ Q̃k̃ − V (π̃AWM
n ).

Recall from Algorithm 2 that k̃ = argmaxk󰃑K Q̃k. Thus:

V (π∗
k)− Q̃k̃ 󰃑 V (π∗

k)− Q̃k

= {V (π∗
k)− V (π̃

(E)
k )}+ {V (π̃

(E)
k )− Ṽ (H)(π̃

(E)
k )}.

By the Law of Iterated Expectations, the second summand has mean zero. By Lemma A.8,

the mean of the first summand is bounded by

EP [V (π∗
k)− V (π̃

(E)
k )] 󰃑 C

󰁳
EP [Γ(W )2]

󰁶
V C(Πk)

nE

.

Next, recall from Algorithm 2 that π̃AWM
n = π̃

(E)

k̃
. Thus,

Q̃k̃ − V (π̃AWM
n ) = Ṽ (H)(π̃

(E)

k̃
)− V (π̃

(E)

k̃
) 󰃑 max

k󰃑K
{Ṽ (H)(π̃

(E)
k )− V (π̃E

k )}.

Since

EP [(Ṽ
(H)(π̃

(E)
k )− V (π̃E

k ))
2 | π̃E

k ] 󰃑
EP [Γ(W )2]

nH

,

using Lemma A.2 we obtain:

EP

󰀗
max
k󰃑K

{Ṽ (H)(π̃
(E)
k )− V (π̃E

k )}
󰀘
󰃑

√
Kmax

k󰃑K
E[(Ṽ (H)(π̃

(E)
k )− V (π̃E

k ))
2]1/2 󰃑

󰁶
KEP [Γ(W )2]

nH

.

Combining the above results, we obtain, for any k ∈ {1, . . . , K},

RP (π̃
AWM
n ) 󰃑 VP (π

∗
P )− VP (π

∗
k,P ) + C

󰁳
EP [Γ(W )2]

󰁶
V C(Πk)

nE

+

󰁶
KEP [Γ(W )2]

nH

.

Taking a minimum over k 󰃑 K gives the stated result. 󰃈

The last lemma addresses the remainder terms.

Lemma A.12 (Remainder Terms). Let (Wi)i∈E and (Wi)i∈H denote the estimation and

hold-out samples. In the notation of Lemma A.9,

39



1. For every fixed π ∈ Π,

EP [V̂
(E)(π)− Ṽ (E)(π)] 󰃑 R3,nE

.

2. For any π̂
(E)
k computed using the estimation sample,

EP [V̂
(H)(π̂

(E)
k )− Ṽ (H)(π̂

(E)
k )] 󰃑 R3,nE

.

Proof. The first claim follows from the proof of Lemma A.9. Recall the terms S1(π), S2(π),

and S3(π) introduced there. The expectations of the first two terms are equal to zero, and

the expectation of the third term is shown to be less than R3,nH
.

Now, we term to the second claim. To simplify the notation, we replace the arguments

of the functions Γ(Wi), m(Di, Xi), g(Xi, Zi), τm(Di, Xi), and their estimated counterparts,

with a subscript i reflecting the observation (from the hold-out sample) at which they are

evaluated. Moreover, we drop the superscript (E) since all quantities are estimated on the

same sample. With this in mind, we can expand Γ̂i − Γi as a sum of three terms:

Γ̂i − Γi = (τm̂,i − τm,i − gi(m̂i −mi)) + (Yi −mi)(ĝi − gi)− (m̂i −mi)(ĝi − gi).

Let S1, S2 and S3 denote the corresponding sums in V̂ (H)(π̂
(E)
k ) − Ṽ (H)(π̂

(E)
k ). Then, by

Assumption 2.1-2 and the Law of Iterated Expectations,

E[S1 | (Wi)i∈E] = E
󰁫
π̂k(Xi) · E[(τm̂,i − τm,i − gi(m̂i −mi)) |Xi, (Wi)i∈E]

󰀏󰀏 (Wi)i∈E

󰁬
= 0.

Further, by the Law of Iterated Expectations and conditional exogeneity of Zi,

E[S2 | (Wi)i∈E] = E
󰁫
π̂k(Xi) · E[Yi −mi |Xi, Di, (Wi)i∈E] · (ĝi − gi)

󰀏󰀏 (Wi)i∈E

󰁬
= 0.

Finally, by Cauchy-Schwartz inequality (in RnH ) and π̂k(Xi)
2 󰃑 1,

S3 󰃑
󰁴

1
nH

󰁓
i∈H(m̂i −mi)2 ·

󰁴
1
nH

󰁓
i∈H(ĝi − gi)2.

Taking expectations on both sides, applying Cauchy-Schwartz inequality again, and using

the Law of Iterated Expectations, we obtain

E[S3] 󰃑
󰁳

E[(m̂i −mi)2] · E[(ĝi − gi)2] 󰃑 R3,nE
,

and the proof is complete. 󰃈
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A.3.1 Proof of Theorem 1

Recall that π̂AWM
n = π̂

(E)

k̂
, π∗ ∈ argmaxπ∈Π V (π), and π∗

k ∈ argmaxπ∈Πk
V (π). Consider an

expansion

V (π∗)− V (π̂n,k̂) = V (π∗)− V (π∗
k) + V (π∗

k)− Q̂k̂󰁿 󰁾󰁽 󰂀
(I)

+ Q̂k̂ − V (π̂
(E)

k̂
)

󰁿 󰁾󰁽 󰂀
(II)

. (A.8)

Consider term (I). Since Q̂k̂ 󰃍 Q̂k, for any k ∈ {1, . . . , K}, we can bound

(I) 󰃑 V (π∗
k)− Q̂k

󰃑
󰁱
V (π∗

k)− V (π̂
(E)
k )

󰁲
+
󰁱
Ṽ (H)(π̂

(E)
k )− V (π̂

(E)
k )

󰁲
+
󰁱
Ṽ (H)(π̂

(E)
k )− V̂ (H)(π̂

(E)
k )

󰁲
.

By Lemmas A.10 and A.12, and the Law of Iterated Expectations,

EP [(I)] 󰃑 C
󰁳

EP [Γ(W )2]

󰁶
V C(Πk)

nE

+ 2RnE
+R3,nE

,

where RnE
and R3,nE

are as defined in Lemma A.9.

Next, consider

(II) =
󰁱
V̂ (H)(π̂

(E)

k̂
)− Ṽ (H)(π̂

(E)

k̂
)
󰁲
+
󰁱
Ṽ (H)(π̂

(E)

k̂
)− V (π̂

(E)

k̂
)
󰁲
. (A.9)

For the first summand in (A.9), we can bound

EP

󰁫
V̂ (H)(π̂

(E)

k̂
)− Ṽ (H)(π̂

(E)

k̂
)
󰁬

󰃑 EP

󰁫
maxk󰃑K |V̂ (H)(π̂

(E)
k )− Ṽ (H)(π̂

(E)
k )|

󰁬

󰃑 Kmaxk󰃑K EP

󰁫󰀏󰀏󰀏V̂ (H)(π̂
(E)
k )− Ṽ (H)(π̂

(E)
k )

󰀏󰀏󰀏
󰁬
.

To bound the above expression, using the notation of Lemma A.12 and omitting the super-

script (E) for the first-stage estimators, for simplicity, we expand

Γ̂i − Γi = (τm̂,i − τm,i − gi(m̂i −mi)) + (Yi −mi)(ĝi − gi)− (m̂i −mi)(ĝi − gi).
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By the triangle inequality,

EP

󰁫󰀏󰀏󰀏V̂ (H)(π̂
(E)
k )− Ṽ (H)(π̂

(E)
k )

󰀏󰀏󰀏
󰁬

= EP

󰁫󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂

(E)
k (Xi)(Γ̂i − Γi)

󰀏󰀏󰀏
󰁬

󰃑 EP

󰁫󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂

(E)
k (Xi)(τm̂,i − τm,i − gi(m̂i −mi))

󰀏󰀏󰀏
󰁬

+ EP

󰁫󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂

(E)
k (Xi)(Yi −mi)(ĝi − gi)

󰀏󰀏󰀏
󰁬

+ EP

󰁫󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂

(E)
k (Xi)(m̂i −mi)(ĝi − gi)

󰀏󰀏󰀏
󰁬

By Assumption 2.1-1, the Law of Iterated Expectations, π̂
(E)
k (Xi) 󰃑 1, and Assumption 2.3,

we obtain

EP

󰀗󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂l,k(Xi)(τm̂,i − τm,i − gi(m̂i −mi))

󰀏󰀏󰀏
2
󰀘

󰃑 EP

󰁫
1
n2
H

󰁓
i∈H(τm̂,i − τm,i − gi(m̂i −mi))

2
󰁬

󰃑 1
nH

EP [(τm̂,i − τm,i − gi(m̂i −mi))
2]

󰃑 2
nH

(EP [(τm̂,i − τm,i)
2] + E[g2i (m̂i −mi)

2])

󰃑 2
nH

· η2+1
η2

a((1−J−1)nE)
(nE)ζm

.

As a result, using the inequality E[|A|] 󰃑 E[|A|2]1/2,

EP

󰁫󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂

(E)
k (Xi)(τm̂,i − τm,i − gi(m̂i −mi))

󰀏󰀏󰀏
󰁬
󰃑

󰁴
2 · nE

nH
· η2+1

η2
a((1−J−1)nE)

(nE)1+ζm .

Using a similar argument, instrument exogeneity, and E[(Yi−mi)
2 |Xi, Di] 󰃑 B2, we obtain:

EP

󰀗󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂

(E)
k (Xi)(Yi −mi)(ĝi − gi)

󰀏󰀏󰀏
2
󰀘
󰃑 1

nH
EP [(Yi −mi)

2(ĝi − gi)
2] 󰃑 B2

nH
· a((1−J−1)nE)

(nE)ζg
,

and thus

EP

󰁫󰀏󰀏󰀏 1
nH

󰁓
i∈H π̂

(E)
k (Xi)(Yi −mi)(ĝi − gi)

󰀏󰀏󰀏
󰁬
󰃑

󰁴
nE

nH
· B2 · a((1−J−1)nE)

(nE)1+ζg .

Finally, by Cauchy-Schwartz inequality (in RnH ) and π̂
(E)
k (Xi) 󰃑 1,

󰀏󰀏󰀏 1
nH

󰁓
i π̂

(E)
k (Xi)(m̂i −mi)(ĝi − gi)

󰀏󰀏󰀏 󰃑
󰁴

1
nH

󰁓
i∈H(m̂i −mi)2 ·

󰁴
1
nH

󰁓
i∈H(ĝi − gi)2

Taking expectations on both sides, applying Cauchy-Schwartz inequality and the Law of
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Iterated Expectations,

EP

󰁫󰀏󰀏󰀏 1
nH

󰁓
i π̂l,k(Xi)(m̂i −mi)(ĝi − gi)

󰀏󰀏󰀏
󰁬
󰃑

󰁳
EP [(m̂i −mi)2] · EP [(ĝi − gi)2] 󰃑

󰁵
a((1−J−1)nE)2

n
ζm+ζg
E

.

Combining the above results, we obtain

EP

󰁫󰀏󰀏󰀏V̂ (H)(π̂
(E)
k )− Ṽ (H)(π̂

(E)
k )

󰀏󰀏󰀏
󰁬
󰃑

󰁴
2 · nE

nH
· η2+1

η2
· a((1−J−1)nE)

(nE)1+ζm +
󰁴

nE

nH
· B2 · a((1−J−1)nE)

(nE)1+ζg +R3,nE
,

where R3,nE
is defined in Lemma A.9 (and the preceding display).

For the second summand in (A.9), arguing as in the proof of Lemma A.11,

EP

󰁫
Ṽ (H)(π̂

(E)

k̂
)− V (π̂

(E)

k̂
)
󰁬
󰃑

󰁴
KVarP (Γ(W ))

nH
.

Combining the bounds on (I) and (II), we obtain, for any k ∈ {1, . . . , K},

RP (π̂
AWM
n ) 󰃑 V (π∗

P )− V (π∗
k) + C

󰁳
EP [Γ(W )2]

󰁴
V C(Πk)

nE
+
󰁴

KVarP (Γ(W ))
nH

+ R̃n,

where R̃n = o(n−1/2) is given by

R̃n = RnE
+ 3R3,nE

+
󰁴

2 · nE

nH
· η2+1

η2
a((1−J−1)nE)

(nE)1+ζm +
󰁴

nE

nH
· B2 · a((1−J−1)nE)

(nE)1+ζg . (A.10)

For any P ∈ Pk, V (π∗
P )− V (π∗

k) = 0, so the above display implies the stated result. 󰃈

A.3.2 Proof of Theorem 2

Let P denote the class of DGP’s satisfying Assumption 2.2. Below, we construct a subclass

of P for which the worst-case regret can be bounded from below by a term proportional to

B/η
󰁳

(V C(Π)− 1)/n. Let x1, . . . , xd, where d = V C(Π) − 1, be a set shattered by Π with

the largest possible cardinality. Let

X ∈ {x1, . . . , xd}, P (X = xj) =
1
d
, for all j;

T ∈ {0, 1}, P (T = 1) = p, T ⊥ (X, Y0, Y1).

Further, let Y0 = 0, and, given a parameter vector c = (c1, . . . , cd) ∈ {−1, 1}d,

Y1 |X = xj =

󰀻
󰀿

󰀽
A w.p. 1

2
(1 + cj

γ
A
)

−A w.p. 1
2
(1− cj

γ
A
)
,
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where γ/A 󰃑 1, and w.p. stands for “with probability.” Then, for Y = TY1 + (1− T )Y0,

E[Y 2] = pA2,

τ(xj) = E[Y1 − Y0|X = xj] = γcj.

For any c ∈ {−1, 1}d, the joint distribution of W = (Y,X, T ) constructed above belongs to

P as long as p ∈ [η, 1− η] and pA2 󰃑 B2. We will specify suitable p and A below.

Let PC = {PW |C=c : c ∈ {−1, 1}d} ⊂ P denote the set of distributions of W constructed

above. Let π∗
P denote the optimal treatment rule when the distribution of the data is P ,

and π∗
c ≡ π∗

PW |C=c
. By construction, π∗

c (xj) = 1(cj = 1) ∈ Π, since the class Π shatters

{x1, . . . , xd}. For any data-dependent policy π̂n,

V (π∗
c )− V (π̂n) =

γ

d

d󰁛

j=1

cj(π
∗
c (xj)− π̂n(xj)) =

γ

d

d󰁛

j=1

1(π∗
c (xj) ∕= π̂n(xj)).

Then, for any distribution µ ∈ ∆({−1, 1}d),

sup
P∈PB,η

EP [V (π∗
P )− V (π̂n)] 󰃍 max

P∈PC
EP [V (π∗

P )− V (π̂n))]

󰃍
󰁝

EPWn
1 |C=c

[V (π∗
c )− V (π̂n))]dµ(c)

=
γ

d

d󰁛

j=1

󰁝 󰁝
1(π∗

c (xj) ∕= π̂n(xj))dPWn
1 |C=cdµ(c)

=
γ

d

d󰁛

j=1

PWn
1 ,Cj

(1(Cj = 1) ∕= π̂n(xj))

󰃍 γ · inf
π
PWn

1 ,Cj
(1(Cj = 1) ∕= π(W n

1 )).

(A.11)

Here, PWn
1 ,Cj

(1(Cj = 1) ∕= π(W n
1 )) is the probability of misclassification of 1(Cj = 1) using

W n
1 . By Theorem 2.1. in Devroye and Lugosi (1996), the infimum is attained by the Bayes

Classifier, π∗(W n
1 ) = 1(P (Cj = 1|W n

1 ) > 0.5), and is equal to

P (1(Cj = 1) ∕= π∗(W n
1 )) = 1

2
P (P (Cj = 1 |W n

1 ) 󰃑 0.5 |Cj = 1)

+ 1
2
P (P (Cj = 1 |W n

1 ) > 0.5 |Cj = −1).
(A.12)

We bound this quantity from below for a specific distribution µ(·) of C. Let Cj ∈ {−1, 1}
be i.i.d. with P (Cj = 1) = 1/2 and C = (C1, . . . , Cd). The joint distribution ofW = (Y,X, T )
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given C = c is

P (Y = y,X = xj, T = t |C = c) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(1− p)1
d

y = 0, t = 0

1
2
(1 + cj

γ
A
)p
d

y = A, t = 1

1
2
(1− cj

γ
A
)p
d

y = −A, t = 1

.

Moreover,

P (Y = y,X = xk, T = t) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(1− p)1
d

y = 0, t = 0

1
2
p
d

y = A, t = 1

1
2
p
d

y = −A, t = 1

,

and

P (Y = y,X = xk, T = t |Cj = 1) = 1(k ∕= j)P (Y = y,X = xj, T = t)

+ 1(k = j)

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(1− p)1
d

y = 0, t = 0

1
2
(1 + γ

A
)p
d

y = A, t = 1

1
2
(1− γ

A
)p
d

y = −A, t = 1

,

so that

P (Y = y,X = xk, T = t |Cj = 1)

P (Y = y,X = xk, T = t)
= 1(k ∕= j) + 1(k = j)

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1 y = 0, t = 0

1 + γ
A

y = A, t = 1

1− γ
A

y = −A, y = 1

.

Therefore,

P (Cj = 1 |W n
1 ) =

P (W n
1 |Cj = 1)P (Cj = 1)

P (W n
1 )

=
1

2

󰀓
1 +

γ

A

󰀔N+
j
󰀓
1− γ

A

󰀔N−
j

,

where N+
j = #{i : Xi = xj, Yi = A, Ti = 1} and N−

j = #{i : Xi = xj, Yi = −A, Ti = 1}. The
tuple (N+

j , N
−
j , n−N+

j −N−
j ) has a multinomial distribution

P (N+
j = k1, N

−
j = k2 |Cj = 1)

=

󰀕
n

k1

󰀖󰀕
n− k1
k2

󰀖󰀕
1

2
(1 +

γ

B
)
p

d

󰀖k1 󰀕1

2
(1− γ

B
)
p

d

󰀖k2 󰀓
1− p

d

󰀔n−k1−k2
. (A.13)

Consider the first summand in (A.12). Denote a = γ/A 󰃑 1, for brevity, and proceed
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conditional on Cj = 1. Note that

P (P (Cj = 1|W n
1 ) 󰃑 0.5) = P ((1 + a)N

+
j (1− a)N

−
j 󰃑 1)

󰃍 P ((1− a2)N
+
j 󰃑 1 |N+

j 󰃑 N−
j ) · P (N+

j 󰃑 N−
j )

= P (N+
j 󰃑 N−

j ).

Let D+
i = 1(Xi = xj, Yi = A, Ti = 1), D−

i = 1(Xi = xj, Yi = −A, Ti = 1). Then,

E[D+
i −D−

i ] = ap/d, Var[D+
i −D−

i ] = p/d − (ap/d)2, and, by direct computation E[|D+
i −

D−
i |3] 󰃑 p/d. Letting Zn denote the studentised version of n−1

󰁓n
i=1(D

+
i − D−

i ) and Φ(·)
denote the Standard Normal CDF, using Berry-Esseen inequality we obtain

P (N+
j 󰃑 N−

j ) = P ( 1
n

󰁓n
i=1(D

+
i −D−

i ) 󰃑 0)

= P

󰀕
Zn 󰃑 −

√
nap/d√

p/d−(ap/d)2

󰀖

󰃍 Φ

󰀕
−
√
nap/d√

p/d−(ap/d)2

󰀖
− K√

n
p/d

(p/d)1/2(1−a2p/d)3/2
,

where K < 0.469 Shevtsova (2013). Choose a = c√
n

󰁴
d
p
for some c ∈ (0, 1) and n large

enough to ensure a 󰃑 1. Then,

P (N+
j 󰃑 N−

j ) 󰃍 Φ

󰀣
− c󰁳

1− c2/n

󰀤
− K√

n

󰁳
p/d

(1− c2/n)3/2
.

It is easy to verify that the second summand in (A.12) can be bounded in exactly the same

way. Thus, recalling that γ = aA = c A√
p

󰁴
d
n
,

sup
P∈P

EP [V (π∗
P )− V (π̂n)] 󰃍 c

A
√
p

󰁵
d

n
·
󰀫
Φ

󰀣
− c󰁳

1− c2/n

󰀤
− K√

n

󰁳
p/d

(1− c2/n)3/2

󰀬
.

Choosing p = η, A = B/
√
η, and simplifying,

sup
P∈P

EP [V (π∗
P )− V (π̂n)] 󰃍

B

η

󰁵
d

n
· c · Φ

󰀣
− c󰁳

1− c2/n

󰀤
− B

n

Kc

(1− c2/n)3/2

For n 󰃍 5, the maximum value of the function c → cΦ(−c/
󰁳

1− c2/n) is at least 0.16

(attained at some c ∈ [0.5, 1]), and the function c 󰀁→ c/(1− c2/n) is monotonically increasing

on c ∈ [0, 1] with the maximum value of at most 1.2. Plugging in these values and K = 0.469
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gives the final bound

sup
P∈P

EP [V (π∗
P )− V (π̂n)] 󰃍 0.16

B

η

󰁵
d

n
− 0.6B

n
,

valid for n 󰃍 max(5, d
η
). Since the lower bound is valid for any measurable map π̂n, we may

take an infimum over all such π̂n. Repeating the argument with Πk and Pk in place of Π and

P gives the stated result.

A.3.3 Proof of Remark 2

Lemma A.13 (Semiparametric Efficiency of Welfare Function). Suppose that

(i) The covariate space X is bounded, the model P satisfies Assumption 2.2 and all P ∈ P

are dominated by a sigma-finite measure µ with a bounded density dP/dQ 󰃑 CQ < ∞.

(ii) The entropy integral E(Π), defined in (9), is finite. The class Π contains a countable

subclass Π0 such that for each π ∈ Π there exists a sequence π0,m such that π0,m(x) →
π(x), for each x.

(iii) The tangent space T (P ) is a closed linear subspace of L2
0(P ).

(iii) VP (π) = EP [π(X)Γ(W )], and ψ(π)(W ) = π(X)Γ(W )− EP [π(X)Γ(W )] ∈ T (P ) .

(v) Letting V̂ (π) denote a feasible estimator and Ṽ (π) = 1
n

󰁓n
i=1 π(Xi)Γ(Wi) an oracle one,

supπ∈Π |V̂ (π)− Ṽ (π)| = oP (n
−1/2).

Then, V̂ (·) is semiparametrically efficient for VP (·) in Cb(Π), and

√
n(V̂ (·)− V (·)) →d G(·),

where G(·) is a tight centered Gaussian process with Cov(G(π1),G(π2)) = EP [ψ(π1)ψ(π2)].

Proof. We will verify the conditions of Theorem 5.2.1 in Bickel, Klaassen, Ritov, and Wellner

(1993). We need to establish that P 󰀁→ VP (·) is (weakly) path-wise differentiable, derive the

form of the efficient influence function, and argue that V̂ (·) attains the efficiency bound.

Fix some P ∈ P, and let {Pt,h} ⊆ P denote a regular parametric sub-model with a score

function h ∈ T (P ) and density pt,h = dPt,h/dQ satisfying

󰁝 󰀕√
pt,h −

√
p

t
− 1

2

√
ph

󰀖2

dQ → 0.
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It is without loss of generality to assume that h is bounded, since the set of all bounded

functions is dense in L0
2(P ). Using linearity of π 󰀁→ VP (π), boundedness of π(x) and h, and

Cauchy-Schwartz inequality, it is straightforward to verify that

sup
π∈Π

󰀏󰀏󰀏󰀏
VPt,h

(π)− VP (π)

t
− EP [ψ(π)h]

󰀏󰀏󰀏󰀏 → 0.

Thus, P 󰀁→ VP (·) is path-wise differentiable with derivative V ′
P (h) : T (P ) → C(Π) given by

V ′
P (h)(π) = E[ψ(π)h].

By the Riesz-Markov theorem, every bounded linear functional L : C(Π) → R takes the form

L(v) =

󰁝

Π

v(π)dµL(π),

where µL is a finite-signed Borel measure on Π. Applying Fubini’s theorem twice, we obtain

L(V ′
P (h)) =

󰁝

Π

EP [ψ(π)h]dµL(π) = EP [ψ(π̄µL
)h],

where π̄L(x) =
󰁕
Π
π(x)dµL(π). Thus, ψ(π̄L) is the canonical gradient of P 󰀁→ VP (·) in the

direction L. Define a mapping Ψ : W → C(Π) as

Ψ(W )(π) = π(X)Γ(W )− EP [π(X)Γ(W )].

By Fubini’s Theorem, L(Ψ(W )) = ψ(π̄L)(W ), so Ψ(W )(·) is the efficient influence function

for V (π). Now, consider the oracle estimator Ṽ (π). Assumptions (i)–(ii) ensure that the

conditions of Theorem 3.10.12 in van der Vaart and Wellner (1996) are met, and thus Ṽ (·)
is a regular estimator. Since the influence function of Ṽ (·) is precisely Ψ(W )(·), by Theorem

5.2.1 in Bickel, Klaassen, Ritov, and Wellner (1993), it is semiparametrically efficient and

converges weakly to G(·). By Assumption (v), V̂ (π) and Ṽ (π) are first-order asymptotically

equivalent uniformly over π ∈ Π, meaning that V̂ (π) is semiparametrically efficient. 󰃈
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